Finite Automata Theory and Formal Languages

TMV026/TMV027/DIT321 - Responsible: Ana Bove
Tuesday 28 of May 2013
Total: 60 points

TMV027/DIT321 registration VT13	TMV026/DIT321 registration before VT13
Exam valid 6 hp	Exam valid 7.5 hp
CTH: $\geqslant 27: 3, \geqslant 40: 4, \geqslant 50: 5$	CTH: $\geqslant 33: 3, \geqslant 43: 4, \geqslant 53: 5$
GU $: \geqslant 27: \mathrm{G}, \geqslant 45:$ VG	GU $: \geqslant 33: \mathrm{G}, \geqslant 50: \mathrm{VG}$

No help material but dictionaries to/from English or Swedish.
Write in English or Swedish, and as readable as possible (think that what we cannot read we cannot correct).
$O B S$: All answers should be well motivated. Points will be deduced when you give an unnecessarily complicated solution or when you do not properly justify your answer.

Good luck!

1. (5pts) Prove that the words generated by the following grammar have always one more triangle (either up or down) than squares (either black or white):

$$
S \rightarrow \boldsymbol{\nabla}|\boldsymbol{\wedge}| S \square S \mid \square S S
$$

Do not forget to clearly state which kind of induction you are using, the property you will prove, the base case(s) and the inductive hypothesis(es)!
2. (3.5pts) Construct a DFA which recognises the language generated by the regular expression $0(1+0)^{*} 1+0(11+00)^{*} 1$, without going via an ϵ-NFA.
3. Consider the following ϵ-NFA:

	0	1	ϵ
q_{0}	$\left\{q_{0}\right\}$	\emptyset	$\left\{q_{1}\right\}$
q_{1}	$\left\{q_{2}\right\}$	\emptyset	$\left\{q_{3}\right\}$
q_{2}	\emptyset	$\left\{q_{1}\right\}$	\emptyset
${ }^{*} q_{3}$	$\left\{q_{3}\right\}$	\emptyset	\emptyset

(a) (1.5 pts) Use your intuition to give a regular expression generating exactly the same language as the one accepted by the automaton.
(b) (4.5pts) Convert the ϵ-NFA into a DFA.
4. (5pts) Minimise the following automaton. Show the intermediate table and justify the construction of the new automaton.

	a	b
$\rightarrow q_{0}$	q_{1}	q_{2}
q_{1}	q_{3}	q_{4}
q_{2}	q_{5}	q_{6}
q_{3}	q_{3}	q_{4}
q_{4}	q_{5}	q_{6}
${ }^{*} q_{5}$	q_{4}	q_{3}
q_{6}	q_{5}	q_{6}

5. (a) (3pts) Show that $\left(a a^{*} b^{*} b\right)^{*}=\epsilon+a(a+b)^{*} b$.
(b) (3pts) Explain why the languages $(0+1)^{*} 01(0+1)^{*}+1^{*} 0^{*}$ and $(0+1)^{*}$ are the same. Hint: A possible way to go is to analyse what each language represents rather than to show double inclusion.
6. (a) (1pts) When is a language regular? Explain as much as you can.
(b) (4.5pts) For each of the following languages, give a regular expression which generates the language or prove that the language is not regular.
i. $\left\{0^{i} 1^{j} 2^{i} \mid i, j \geqslant 0\right\}$;
ii. $\left\{0^{i} 1^{j} 2^{k} \mid i, j, k \geqslant 0\right\}$.
7. (a) (6pts) Give a context-free grammar that generates the language $\left\{a^{i} b^{j} c^{k} \mid j \neq i+k\right.$ with $\left.i+j+k>0\right\}$.
(b) (1pt) When is a grammar ambiguous?
(c) (1.5pts) Is the grammar ambiguous? Justify.
8. Consider the following grammar with start symbol S :

$$
\begin{array}{ll}
S \rightarrow a A B|A b B| F & \\
A \rightarrow a A \mid C & C \rightarrow c C \mid \epsilon \\
B \rightarrow b B \mid D & D \rightarrow d D \mid \epsilon \\
F \rightarrow f F \mid F f & E \rightarrow e E \mid \epsilon
\end{array}
$$

(a) (2pts) Identify the nullable variables and eliminate ϵ-productions;
(b) (2pts) Identify and eliminate unit productions in the grammar from (a);
(c) (1.5pts) Identify and eliminate useless symbols in the grammar from (b);
(d) (2.5pts) Use your intuition and describe, as formal as you can, the language generated by the grammar in (c);
(e) (1pts) Is the language described in (d) regular? Justify;
(f) (1.5pts) Put the grammar from (c) in Chomsky Normal Form.
9. (4pts) Consider the following grammar with start symbol S :

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

Apply the CYK algorithm to determine if the string $a a b b a$ is generated by this grammar. Show the resulting table and justify your answer.
10. (a) For TMV026/DIT321 registration before VT2013
(6pts) Construct a Turing machine for the language $\left\{0^{i} 1^{j} \mid i>j\right\}$ by giving its transition function. Explain it.
NOTE: You may chose to do part (b) instead if you prefer.
(b) For TMV027/DIT321 registration VT2013
i. (4pts) Give a high-level description of a Turing machine for the language $\left\{0^{i} 1^{j} \mid i>j\right\}$.
ii. (1pt) Explain what a Turing decider is.
iii. (1pt) State whether your Turing machine is also a Turing decider or not. Justify.

