
Datavetenskap

Rogardt Heldal! OCL! - 1 -!

Lecture 12
OCL

Rogardt Heldal

Datavetenskap

Rogardt Heldal! OCL! - 2 -!

Constraints
•  Invariant
•  Pre- and post condition
•  Guards

Datavetenskap

Rogardt Heldal! OCL! - 3 -!

Common terms
•  Comment: comment to an element, e.g.,

specification in natural language or a
constraint

•  Constraint: restriction of the usage of a UML
element. Here, we consider constraints written
in the formal language OCL

Datavetenskap

Rogardt Heldal! OCL! - 4 -!

Motivation: Constraints

Loan Person
SSNr

1 *
Maximum 10
loans at the
same time loans person

Loan Person
SSNr

1 0..10
loans person

Loan Person
SSNr

1 * loans->size() <= 10
loans person

Datavetenskap

Rogardt Heldal! OCL! - 5 -!

Constraints

1

Shape

+area():double
+move(p:Point)

Point
-x:double
-y:double

+toString():String
+move(dist:Point)

Cirkel

+area():double
+toString():String
+move(p:Point)
+setRadius(radius:double):void

radius:double {radius>0} 1

A constraint written in OCL.
radius has to be greater 0.

Constraints can be written in natural language or using a
formal language like OCL. Advantage of a formal language
is that there are no ambiguities.

Datavetenskap

Rogardt Heldal! OCL! - 6 -!

Motivation: Constraints
•  The domain model cannot express that borrower can only have

exemplars which can be borrowed, “canBeBorrowed”.
Furthermore, that amount in class Bill always has to be >=0.

Loan Borrower
SSNr

1 0..10
loans person

Bill
amount

Exemplar

moneyOwn 1

1

1

*

canBeBorrowed

exemplar

Datavetenskap

Rogardt Heldal! OCL! - 7 -!

Motivation: Constraints
•  Borrower
 loans
 -> forAll (
 exemplar
 .
 canBeBorrwed

Loan Borrower
SSNr

1 0..10
loans person

Bill
amount

Exemplar

moneyOwn 1

1

1

*

canBeBorrowed

exemplar

)

Context inv:

Set

Used with collection
operations

Used when referring to one thing

Datavetenskap

Rogardt Heldal! OCL! - 8 -!

Motivation: Constraints
•  Bill
 amount

Loan Borrower
SSNr

1 0..10
loans person

Bill
amount

Exemplar

moneyOwn 1

1

1

*

canBeBorrowed

exemplar

>=0
context inv:

Datavetenskap

Rogardt Heldal! OCL! - 9 -!

Constraints
•  context Borrower inv:
 loans->forAll(exemplar.canBeBorrwed)

•  context Bill inv:
 amount >= 0

Datavetenskap

Rogardt Heldal! OCL! - 10 -!

Invariants

•  A property that has to hold for all instances of a class/
interface/concept. For example:

•  context Person inv: -- invariant of class Person
 age > 16

•  context Person inv:
 self.age > 16 -- Variable self always points to the

 -- instance of Person itself.

Person
age:int

Datavetenskap

Rogardt Heldal! OCL! - 11 -!

Association Ends and
Navigation

 Navigation from one class to another, along an
association, works mostly like accessing attributes.
The role name of the association end is used for
identifying the target.

context Company inv:
 employees->forAll(age > 16)

Person Company
employees employers
* *

age:int

Datavetenskap

Rogardt Heldal! OCL! - 12 -!

Choice of Context
•  An invariant ”age > 16” in class Person ensures that

there is no person younger than 17
•  An invariant ” employees->forAll(age > 16)” in class

Company ensures that no employee of a company is
younger than 17. Other persons can be young …

Person Company employees employers
* *

age:int

Datavetenskap

Rogardt Heldal! OCL! - 13 -!

Problem

coursesDone

registeredFor
*

*

Course
Student *

* name
…

registered name
…

requirements *

*

LectureRoom

NumberOfSeats
…

*
*

Problem:
 What invariants are natural to include here?

Datavetenskap

Rogardt Heldal! OCL! - 14 -!

Solutions
•  Problems:

–  A course can be requirement for itself.
–  The model does not constrain a student to not read a course

without the correct prerequisites.
•  In reality this might happen. To let the system not permit this

situation might be too strict.
–  Number of seats in a lecture room is not constrained in any

way.
–  The model permits more students to register than there are

seats in a lecture room.

•  Comments: these are business rules which is hard or
impossible to state using only domain models.

Datavetenskap

Rogardt Heldal! OCL! - 15 -!

Example: Constraints

coursesDone

registeredFor
*

*

Course
Student *

* name
…

registered name
…

requirements *

*

A course can be requirement for itself:

context Course inv:
 not requirements->includes(self)

Datavetenskap

Rogardt Heldal! OCL! - 16 -!

Example: Constraints

coursesDone

registeredFor
*

*

Course
Student *

* name
…

registered name
…

requirements *

*

The model does not constrain a student to
not read a course without the correct prerequisites:

context Student inv:
 coursesDone -> includesAll(self.registeredFor
 ->collect(requirements)->flatten())

Datavetenskap

Rogardt Heldal! OCL! - 17 -!

Problem: UML
 An Account can be associated with a Person or a
Company but not with both. What is the problem with
the diagram below?

Account
-interest
-amount

 +changeInterest
Company

-name:String
-numberOfWorkers: Integer

Person
-age:Integer
-secondName:String
-firstName:String

0..1

0..1

Datavetenskap

Rogardt Heldal! OCL! - 18 -!

Solution {or}

Account
-interest
-balance

 +setInterest
Company

-name:String
-numberOfEmp:Integer

{or}

0..1

0..1

context Account inv:
 person->intersection(company)->isEmpty

context Account inv:
 self.person->isEmpty or self.company->isEmpty

Person
-age:Integer
-surname:String
-firstName:String

Datavetenskap

Rogardt Heldal! OCL! - 19 -!

Problem
•  When buying a house, one can take a

mortgage with the security being another
house one owns. What is the problem with the
diagram below:

Person

House

Mortgage

owner homes

security
0..*

socSecNr:Integer

1

0..* 0..*

1
1

Datavetenskap

Rogardt Heldal! OCL! - 20 -!

Solution
•  If a house is used as security, then one has to

own the house. This cannot be expressed in
UML alone.

•  It cannot be expressed that socSecNr is
unique.

Person

House

Mortage

owner homes

security
0..*

socSecNr:Integer

1

0..* 0..*

1
1

Datavetenskap

Rogardt Heldal! OCL! - 21 -!

Solution

context Person inv:
 mortgage.security.owner = self

Person

House

Mortgage

owner homes

security
0..*

socSecNr:Integer

1

0..* 0..*

1
1

mortgage

Datavetenskap

Rogardt Heldal! OCL! - 22 -!

Class Diagrams
•  As we have seen, it make sense to add formal OCL

invariants to domain models, things which always have
to hold in the model.

•  In class diagrams one should also include OCL
invariants in a similar way.

•  Furthermore, in class diagram one can also include
formal OCL pre- and post-conditions on operations,
example following …

Datavetenskap

Rogardt Heldal! OCL! - 23 -!

Pre- and Postconditions

Article

-accessible:enum{stored,notStored}
-number:int
-price : double

Order
-sum:double
+addArticle(a:Artikel):void

orders

articles *

*

+available():Boolean

Pre:
•  The article number of ‘a’ has
 to be different from 0
Post:
•  The new article is added to
 the set ‘articles’.
•  The price of the article is
 added to the ‘sum’.

Datavetenskap

Rogardt Heldal! OCL! - 24 -!

Pre- and Postconditions
context Order::addArticle(a:Article):void
pre: a.number <> 0
post: articles = articles@pre->including(a)
post: sum = sum@pre + a.price

Article

-accessible:enum{stored,notStored}
-number:int
-price : double

Order
-sum:double
+addArticle(a:Artikel):void

orders

articles *

*

+available():Boolean

Datavetenskap

Rogardt Heldal! OCL! - 25 -!

Pre- and Postconditions
context Order::addArticle(a:Article):void
pre: a.number <> 0
post: articles@pre->including(a) = articles
post: sum@pre + a.price = sum

Article

-accessible:enum{stored,notStored}
-number:int
-price : double

Order
-sum:double
+addArticle(a:Artikel):void

orders

articles *

*

+available():Boolean

Datavetenskap

Rogardt Heldal! OCL! - 26 -!

Pre- and Postconditions

Article

-accessible:enum{stored,notStored}
-number:int
-price : double

Order
-sum:double
+addArticle(a:Artikel):void

orders

articles *

*

+available():Boolean

Post:
return true if article is
stored at company.

Datavetenskap

Rogardt Heldal! OCL! - 27 -!

Pre- and Postconditions
context Article::available():Boolean
post: result = (accessible = #stored)

Article

-accessible:enum{stored,notStored}
-number:int
-price : double

+available():Boolean

Datavetenskap

Rogardt Heldal! OCL! - 28 -!

Lot of small examples to show
the power of OCL

Datavetenskap

Rogardt Heldal! OCL! - 29 -!

Set Operations
•  Operations on collections (sets, bags,

sequences) are always invoked with an arrow
’->’, e.g.

 context Company inv:
 numberOfEmp = employees -> size()

 Company
numberOfEmp:int

Person
* *
employees employers

Datavetenskap

Rogardt Heldal! OCL! - 30 -!

Example: select
context Company inv:
 self.employees->select(age > 45)->notEmpty

Person
age:Integer

Company employees employers
* *

Datavetenskap

Rogardt Heldal! OCL! - 31 -!

Example: collect
context Company:
 self.employees->collect(birthDate) -- Bag(Date)

self.employees->collect(birthDate)->asSet

Person
birthDate:Date

Company employees employers

* *

Datavetenskap

Rogardt Heldal! OCL! - 32 -!

Example: ForAll
context Company inv:
 self.employees->forall(firstName = ’Jack’)

context Company inv:
 self.employees->forall(e1,e2:Person |
 e1 <> e2 implies e1.personalNr <> e2.personalNr)

Person
firstName:String
personalNr:String

Company employees employers
* *

Datavetenskap

Rogardt Heldal! OCL! - 33 -!

Example: Exists
context Company inv:
 self.employee->exists(firstName = ’Jack’)

Person
firstName:String
personalNr:String

Company employees employers

* *

Datavetenskap

Rogardt Heldal! OCL! - 34 -!

Let Expressions
context Person inv:

 let income : Integer = self.employment.salary->sum in
 if isUnemployed then income < 8000
 else income >= 8000

 endif

Person

-isUnemployed:Boolean

+income(d:Date):Integer
Company

-name:String
-numberOfEmp: Integer employees employers

* *

 Employment
description:String
startDate:Date
salary:Integer

Datavetenskap

Rogardt Heldal! OCL! - 35 -!

Larger example

Datavetenskap

Rogardt Heldal! OCL! - 36 -!

Loan Borrower
SSNr

1 0..10
loans person

Bill
amount

Exemplar

MoneyOwen 1

1

1

*

canBeBorrowed

exemplar

LoanController
loan()

currentExemplar

0..1

Date end

start

*

*
1

1

Datavetenskap

Rogardt Heldal! OCL! - 37 -!

Contract
•  Contract CO4: loan
•  Operation: loan(person)
•  Reference: Use case “Loan Book”
•  Description: An Exemplar is loaned by a

person with the current date as starting date.
The return date is one loan period (which
depends on the book) later. If person is
already loaning too many books,
TooManyLoansException is thrown.

Datavetenskap

Rogardt Heldal! OCL! - 38 -!

Contract
•  Contract CO4: loan() (cont’d)
•  Post-condition:

–  if person was having less than 10 loans and no bill
unpaid and book is permitted to be borrowed then

•  new instance of Loan has been created and associated
with the person taking the loan.

•  Loan has been associated with start and end date
–  start date is today’s date
–  end date is start date plus the loan time

–  else
•  No new loan has been associated with the borrower.

Datavetenskap

Rogardt Heldal! OCL! - 39 -!

Loan Borrower
SSNr

1 0..10
loans person

Bill
amount

Exemplar

MoneyOwen 1

1

1

*

canBeBorrowed

exemplar

LoanController
loan()

currentExemplar

0..1

Date end

start

*

*
1

1

Datavetenskap

Rogardt Heldal! OCL! - 40 -!

Contract
•  contex LoanController::loan():Date post:
 borrower.moneyOwen.amount=0 and
 borrower.loans->size() < 10 and
 currentExemplar.canBeBorrowed
 then
 borrower.loans->
 exist(loanNew:Loan | loanNew.oclIsNew and
 loanNew.examplar = currentExemplar and
 borrower.loans =
 borrower.loans@pre->including(loanNew) and
 loanNew.start.isToday() and
 31 = loanNew.end.minus(loanNew.start) and

 result = loanNew.end)
 else
 borrower.loans@pre = borrower.loans

if

Datavetenskap

Rogardt Heldal! OCL! - 41 -!

Conditions in state machines

Datavetenskap

Rogardt Heldal! OCL! - 42 -!

Conditions

Cannot be borrowed Can be borrowed

returned(copy)

borrowed(copy)
 [copies->forall(
 oclInState(Borrowed))]

returned(copy)

borrowed(copy)
 [copies->exist(
 oclInState(OnShelf))]

condition

State chart for Book:

Datavetenskap

Rogardt Heldal! OCL! - 43 -!

Constraints
•  Invariant
•  Pre- and post condition
•  Guards/Conditions

Datavetenskap

Rogardt Heldal! OCL! - 44 -!

Appendix

Datavetenskap

Rogardt Heldal! OCL! - 45 -!

Object Contraint Language
•  OCL is a formal declarative specification

language, i.e., expressions of the
language do not have side effects.

•  Can be used for:
•  Specify invariants of classes and types
•  Describe pre- and postconditions of operations and

methods
•  Write guards (e.g., for “opt” fragments in sequence

diagrams)
•  …

Datavetenskap

Rogardt Heldal! OCL! - 46 -!

 Why constraints?
–  First of all, writing constraints makes it

necessary to understand a problem in depth;
might, e.g., lead to discovering mistakes

–  Constraints can be tested in program
(dynamically, while program is executed)

–  It can be proved that a program does never
violate constraints (statically, before running
the program)

– …
–  A combination of the items above

Datavetenskap

Rogardt Heldal! OCL! - 47 -!

Basic Data Types of OCL
Type: Example:
Boolean false,true
Integer 1,5,333
Real 3.23
String ’hej’
Set {33,56,45},{’blue’,’green’}
Bag {67,094,5,2},{13,7,7}
Sequence {1..10},{3,7,67}

Datavetenskap

Rogardt Heldal! OCL! - 48 -!

Basic Operations of OCL
•  Integer : *, +, -, /, abs, mod ...
•  Real: *, +, -, /, floor, ...
•  Boolean: and, or, xor, not, if-then-else, implies, ...
•  String: toUpper, concat, …
•  Set: union, intersection, include, asSequence, asBag …
•  Bag: …
•  Sequence: first, last, at(i), ...

Infix-operators: +, -,*,/,<,>,<>,<=,>=,and,or,xor
’--’ marks comments in OCL

Datavetenskap

Rogardt Heldal! OCL! - 49 -!

Basic Operations of OCL
Example of OCL expressions:
 3 + 5 * 111
 13 + 12.9 -- implicit type conversion
 2.mod(2)

Example of incorrect OCL expressions:
 1 + ’hej’
 true + 1

Datavetenskap

Rogardt Heldal! OCL! - 50 -!

OCL Expressions and Constraints
•  Only OCL expressions of type Boolean can be used as

constraints! E.g.
•  age >= 0

•  Not usable as constraints:

•  ’hej’
•  3 + 5

Datavetenskap

Rogardt Heldal! OCL! - 51 -!

Precedence of Operators
•  ::
•  @pre
•  . och ->, ^
•  not och - -- unary
•  * och /
•  + och -
•  if-then-else-endif
•  <,>,<= och >= , = och <>
•  and, or, och xor
•  implies

 Grouping of operands can be controlled using
parentheses

High precedence

Low precedence

Datavetenskap

Rogardt Heldal! OCL! - 52 -!

Model Types
•  Classes, interfaces, enumerations or other types of a

UML model can directly be used in OCL.

Date
now:Date

isBefore(t:Date):Boolean
isAfter(t:Date):Boolean
=(t:Date):Boolean

Model type

Datavetenskap

Rogardt Heldal! OCL! - 53 -!

Attributes
•  Attributes of a UML class can be used in OCL

expressions like in Java, e.g.,
•  age > 18
•  self.age > 18

Person
-isMarried:Boolean
-isEmployed:Boolean
-age:Integer
-name:String

Datavetenskap

Rogardt Heldal! OCL! - 54 -!

Operations
•  Operations with the stereotype {isQuery} can be used in OCL

expressions. Such operations must not have side effects

•  OCL expressions:

•  getAge() >= 0
•  self.getAge() >= 0

•  Class variables and class operations can be accessed by adding
the class name:
•  Data.now

Person
-isMarried:Boolean
-isEmployed:Boolean
-age:Integer
-name:String

+getAge():Integer{isQuery}

Datavetenskap

Rogardt Heldal! OCL! - 55 -!

Invariants

•  A property that has to hold for all instances of a class/
interface/concept. For example:

•  context Person inv: -- invariant of class Person
 age > 16

•  context Person inv:
 self.age > 16 -- Variable self always points to the

 -- instance of Person itself.

Person
age:int

Datavetenskap

Rogardt Heldal! OCL! - 56 -!

Association Ends and
Navigation

 Navigation from one class to another, along an
association, works mostly like accessing attributes.
The role name of the association end is used for
identifying the target.

context Company inv:
 employees->forAll(age > 16)

Person Company
employees employers
* *

age:int

Datavetenskap

Rogardt Heldal! OCL! - 57 -!

Choice of Context
•  An invariant ”age > 16” in class Person ensures that

there is no person younger than 17
•  An invariant ” employees->forAll(age > 16)” in class

Company ensures that no employee of a company is
younger than 17. Other persons can be young …

Person Company employees employers
* *

age:int

Datavetenskap

Rogardt Heldal! OCL! - 58 -!

Problem
•  Number of seats in a lecture room is always

more than 10.

coursesDone

registeredFor
*

*

Course
Student *

* name
…

registered name
…

requirements *

*

LectureRoom

numberOfSeats
…

*

* lectureRoom

Datavetenskap

Rogardt Heldal! OCL! - 59 -!

Solution
•  context LectureRoom inv:
 numberOfSeats > 10

Datavetenskap

Rogardt Heldal! OCL! - 60 -!

Pre- and Postconditions
•  The precondition specifies what has to hold before the

call to the operation.
•  The postcondition has to specify what has to hold after

the execution of the call.

Datavetenskap

Rogardt Heldal! OCL! - 61 -!

Problem
•  Write pre and post-conditions for operation addDrivers in class

Club. A pre-condition is that the person needs to be a member of
the club. As post-condition a person should be added to ‘drivers’ if
the age of the person is more than 20 years and the person has a
driving licence.

Person

- age:int
- member:Boolean

Club
-numberOfDrivers:Integer
+addDrivers(p:Person):void

drivers *
*

+getAge():Integer
+getMember()Boolean

DrivingLicence 1 0..1

if <oclBooleanExpression> then
 <oclExpression>
else
 <oclExpression>
endif

licence

Datavetenskap

Rogardt Heldal! OCL! - 62 -!

Solution
•  context Club::addDrivers(p:Person):void
 pre: p.getMember()

 post: if p.age > 20 and p.licence->notEmpty()
 then drivers = drivers@pre->including(p)
 else true endif
•  post: (p.age > 20 and p.licence->size() = 1) implies
 drivers = drivers@pre->including(p)
Stronger condition:
•  post: if p.age > 20 and p.licence->size() = 1
 then drivers = drivers@pre->including(p)
 else drivers = drivers@pre endif

Datavetenskap

Rogardt Heldal! OCL! - 63 -!

Boolean
context Person inv:
 title = (if gender = #male
 then ’Herr.’
 else ’Fru.’ endif)

context Person inv:
 gender = #male implies title = ’Herr.’

 ’#’ is used to distinguish between attributes and
elements of enumerations

Person

+income(d:Date):Integer

-isMarried:Boolean
-isUnemployed:Boolean
-age:Integer
-surname:String
-firstName:String
-gender : enum{female, male}
-title:String

Datavetenskap

Rogardt Heldal! OCL! - 64 -!

Collections
 Types Set(X), Bag(X) and Sequence(X) are
subtypes of Collection(X).

 Lots of operations are defined for collections:

 =, size, sum, includes, isEmpty, exists,
 forAll...

Datavetenskap

Rogardt Heldal! OCL! - 65 -!

Set Operations
•  Operations on collections (sets, bags,

sequences) are always invoked with an arrow
’->’, e.g.

 context Company inv:
 numberOfEmp = employees -> size()

 Company
numberOfEmp:int

Person
* *
employees employers

Datavetenskap

Rogardt Heldal! OCL! - 66 -!

Sets
 Set {1, 4, 9, 55}

 Operations defined for sets:
 union, intersection, -, include, exclude,

 select, reject, collect, asBag, asSequence … .

Datavetenskap

Rogardt Heldal! OCL! - 67 -!

Example: Sets, Bags
Set{1, 3, 8, 12} - Set{3,12} = Set{1, 8} -- Set(Integer)
Set{1, 3}->union(Set{4}) = Set{1, 3, 4} -- Set(Integer)

Bags can be written in the same way:

 Bag{1,2,2,5}

Datavetenskap

Rogardt Heldal! OCL! - 68 -!

Sequences
 Sequence{1,8,6,9}

 Operations defined for sequences:
 union, =, append, prepend, at, first, last, including ,
exclude, select, reject, collect, asBag, asSet … .

 Ordered associations ends are sequences in OCL:

{order}

*

Datavetenskap

Rogardt Heldal! OCL! - 69 -!

Example: Sequence
Sequence{1, 13, 8, 12} ->first = 1 -- Integer
Sequence{1, 13, 8, 12} ->last = 12 -- Integer
Sequence{1, 13, 8, 12} ->at(3) = 8 -- Integer
Sequence{1, 13, 8, 12} ->append(15) =
 Sequence{1,13,8,12,15} --Sequence(Integer)

Datavetenskap

Rogardt Heldal! OCL! - 70 -!

Example: select
context Company inv:
 self.employees->select(age > 45)->notEmpty

context Company inv:
 self.employees->select(p | p.age > 45)->notEmpty

context Company inv:
 self.employees->select(p: Person | p.age > 45)->notEmpty

Person
age:Integer

Company employees employers
* *

Datavetenskap

Rogardt Heldal! OCL! - 71 -!

Example: collect
context Company:

self.employees->collect(birthDate) -- Bag(Date)
self.employees->collect(p | p.birthDate)
self.employees->collect(p : Person | p.birthDate)

self.employees->collect(birthDate)->asSet

Person
birthDate:Date

Company employees employers

* *

Datavetenskap

Rogardt Heldal! OCL! - 72 -!

Example: ForAll
context Company inv:
 self.employees->forall(firstName = ’Jack’)

context Company inv:
 self.employees->forall(e1,e2:Person |
 e1 <> e2 implies e1.personalNr <> e2.personalNr)

context Company inv:
 self.employees->forall(e1| self.employees-> forall (e2 |
 e1 <> e2 implies e1.personalNr <> e2.personalNr))

Person
firstName:String
personalNr:String

Company employees employers
* *

Datavetenskap

Rogardt Heldal! OCL! - 73 -!

Example: Exists
context Company inv:
 self.employee->exists(firstName = ’Jack’)

Person
firstName:String
personalNr:String

Company employees employers

* *

Datavetenskap

Rogardt Heldal! OCL! - 74 -!

Iterate
•  Most powerful and most complicated of all OCL

collection operations.

collection->iterate(elem : Type;
 acc : Type = <expression> |
 expression-with-elem-and-acc)
Example:

context Order inv:
 sum = orderedArticles->iterate(a:Article; result : Real = 0
 | result + a.price)

context Order inv:
 sum= orderedArticles->collect(price)->sum

Order Article orderedArticles

* * -price:double -sum:double

Datavetenskap

Rogardt Heldal! OCL! - 75 -!

Problem
 Express in OCL that an Account can be associated
with a Person or a Company but not with both.

Account
-interest
-amount

 +changeInterest
Company

-name:String
-numberOfWorkers: Integer

Person
-age:Integer
-secondName:String
-firstName:String

0..1

0..1

Datavetenskap

Rogardt Heldal! OCL! - 76 -!

Solution {or}

Account
-interest
-balance

 +setInterest
Company

-name:String
-numberOfEmp:Integer

{or}

0..1

0..1

context Account inv:
 person->intersection(company)->isEmpty

context Account inv:
 self.person->isEmpty or self.company->isEmpty

Person
-age:Integer
-surname:String
-firstName:String

Datavetenskap

Rogardt Heldal! OCL! - 77 -!

Problem
•  Write an invariant which does not permit more

students to register than there are seats in a
lecture room.

coursesDone

registeredFor
*

*

Course
Student *

* name
…

registered name
…

requirements *

*

LectureRoom

numberOfSeats
…

*

* lectureRoom

Datavetenskap

Rogardt Heldal! OCL! - 78 -!

Solution
•  context Course inv:
 lectureRoom->forAll(self.registered->size() <= numberOfSeats)

Datavetenskap

Rogardt Heldal! OCL! - 79 -!

Problem
•  Express using OCL that if a house is used as

security, then one has to own the house.
•  Choose context Person.

Person

House

Mortage

owner homes

security
0..*

socSecNr:Integer

1

0..* 0..*

1
1

Datavetenskap

Rogardt Heldal! OCL! - 80 -!

Solution

context Person inv:
 mortgage.security.owner = self

Person

House

Mortgage

owner homes

security
0..*

socSecNr:Integer

1

0..* 0..*

1
1

mortgage

Datavetenskap

Rogardt Heldal! OCL! - 81 -!

Let Expressions
context Person inv:

 let income : Integer = self.employment.salary->sum in
 if isUnemployed then income < 8000
 else income >= 8000

 endif

Person

-isUnemployed:Boolean

+income(d:Date):Integer
Company

-name:String
-numberOfEmp: Integer employees employers

* *

 Employment
description:String
startDate:Date
salary:Integer

Datavetenskap

Rogardt Heldal! OCL! - 82 -!

Inheritance
Liskov’s Substitution Principle:

•  “Wherever an instance of a class is expected also

instances of subclasses can be used”
•  This implies the following points:

•  Invariants of superclasses are inherited by subclasses. In
subclasses, invariants may be made stronger, but not weaker (or
unrelated)

•  Preconditions may be made weaker, but not stronger (or unrelated),
if an operation is overridden in a subclass

•  Postconditions may be made stronger, but not weaker (or unrelated),
if an operation is overridden in a subclass

Datavetenskap

Rogardt Heldal! OCL! - 83 -!

Example
Chimney

temperature:Integer
status:enum{on,off}
isOpen :Boolean
open()

OilChimney

open()

context Chimney
inv: temperature <= 300

context OilChimney
inv: temperatur <= 200

context OilChimney
inv: temperatur <= 500

context Chimney::open()
pre : status = #off
post: status = #off and isOpen

context OilChimney::open()
pre : --
post: status = #off and isOpen

context OilChimney::open()
pre : temperature <= 100
post: isOpen

Datavetenskap

Rogardt Heldal! OCL! - 84 -!

Multiple Inheritance
Radio TV

sound:Integer sound:Integer

RadioTV

context RadioTV
inv: Radio::ljud < 12

Datavetenskap

Rogardt Heldal! OCL! - 85 -!

OclType
 The types of types …

 sometype.name -- String
 sometype.attributes -- Set(String)
 sometype.operations -- Set(String)
 sometype.supertypes -- Set(OclType)
 sometype.allSupertypes -- Set(OclType)
 sometype.allInstances -- Set(sometype.oclType)

Person.allInstances – give all objects of Person

Datavetenskap

Rogardt Heldal! OCL! - 86 -!

Example: OclType
Transaction.name = ’Transaction’
Transaction.attributes = Set(’point’,’date’)
Transaction.associationEnds = Set{’card’}
Burning.supertypes = Set{Transaction}
Transaction.operations = Set{’program’}

Transaction

Burning Earning

points:Integer
date:Date

program():LoyaltyProgram

CustomerCard

Datavetenskap

Rogardt Heldal! OCL! - 87 -!

Constraints written in Java

class Circle{
 private int radius;

 public void setRadius(int radius){
 if (radius > 0){ // constraint
 this.radius= radius;

 else
 …
 }
 }
 …

}

Cirkel

+area():double
+toString():String
+move(p:Point)
+setRadius(radius:double):void

-radius:double {radius>0}

An exception should be thrown
if the constraint is violated …

Datavetenskap

Rogardt Heldal! OCL! - 88 -!

Problem: Contract

coursesDone

registeredFor
*

*

Course
Student *

* name
…

registered name
…

requirements *

*

Write a post-condition of a contract for operation registerStudent. Should
only register students if it has all the right requirements for the course and
the lecture room is large enough.

LectureRoom

numberOfSeats
…

*

* lectureRoom
RegisterSystem

registerStudent(s:Student,c:Course)
…

Datavetenskap

Rogardt Heldal! OCL! - 89 -!

Solution
•  context RegisterSystem::
 registerStudent(s:Student,c:Course):void
 post: s. coursesDone -> includesAll
 (s.registeredFor->
 collect(requirements)->flatten())
 and c.lectureRoom->forAll(numberOfSeats
 > c.registered->size())
 implies c.registered = c.registered@pre -> including(s)

Datavetenskap

Rogardt Heldal! OCL! - 90 -!

Summary
•  We have considered how to use OCL in combination

with UML to give constraints on the model.

