
Datavetenskap

Rogardt Heldal Use Cases - 1 -

Lecture 4

Use cases

Rogardt Heldal

Datavetenskap

Rogardt Heldal Use Cases - 2 -

Advanced topics

Datavetenskap

Rogardt Heldal Use Cases - 3 -

”Include”
• Often used to catch common action steps

• Important: one has to leave and come back to the main flow at the same
place.

• In the flow which is included add action step:

include (the name of the included use case)

Main flow

Included flow

Datavetenskap

Rogardt Heldal Use Cases - 4 -

UML-syntax
• Use cases A and B includes C:

– A and B know about C, but not the other way round.
– C must have at least as high priority as A and B.

A

B
C

<<include>>

<<include>>

Datavetenskap

Rogardt Heldal Use Cases - 5 -

”Extend”
• Sometimes one wants to include extra action steps in a use case. Then

”extend” might be useful:

• Important: one has to leave and come back to the main flow at the same
place.

Main flow

Extended flow

Datavetenskap

Rogardt Heldal Use Cases - 6 -

UML Syntax

• A is extended with B

• Some condition has to be satisfied for the use case B
to be used.

• A has to be a full use case without B.

B
A

<<extend>>

Datavetenskap

Rogardt Heldal Use Cases - 7 -

extend

• In the use case IssueFine’s flow:

• …

• …

• Extension point:overdueBook

• …

IssueFine <<extend>>

Return Book
Extension points
 overdueBook

Datavetenskap

Rogardt Heldal Use Cases - 8 -

Inherit relation
• It might happen that several use cases have action steps which

are similar. In this case one can use abstract use cases:

• A inherits from B.

B

A

Datavetenskap

Rogardt Heldal Use Cases - 9 -

Example

Give loan

Give loan

private customer
Give loan

organisation

PrivateCustomer
Organisation

Customer

Datavetenskap

Rogardt Heldal Use Cases - 10 -

Uses
• Whether to use ”include”, ”extend”, and inherit is

discussed a lot.

• Most important reason for using these features: they
can improve readability

Datavetenskap

Rogardt Heldal Use Cases - 11 -

Split

One full
use case

Split

Two full use cases

Datavetenskap

Rogardt Heldal Use Cases - 12 -

Vertical split

Condition for the
taking an alternative
way.

Same
action
steps

Different
Action
steps

Same
action
steps

Datavetenskap

Rogardt Heldal Use Cases - 13 -

When to split
• If it is not important to show the condition

• If main flow and alternative flow do not have many
steps in common

• If the two flows are complete use cases in themselves

• Sometimes one might want to combine use cases as
well.

Datavetenskap

Rogardt Heldal Use Cases - 14 -

Actor Specialisation
• Vertical split can lead to more specialised actors, for example:

Customer

Private Organisation

Datavetenskap

Rogardt Heldal Use Cases - 15 -

Example of Actor Inheritance

Customer

Operator

Booking

Datavetenskap

Rogardt Heldal Use Cases - 16 -

Horizontal Split

Two full

use cases

One full

use case

Datavetenskap

Rogardt Heldal Use Cases - 17 -

Business Use Cases
• Describes how a business works. May describe human

behaviour as well.

• May contain system use cases.

Datavetenskap

Rogardt Heldal Use Cases - 18 -

System Sequence Diagram

Datavetenskap

Rogardt Heldal Use Cases - 19 -

Use case: Withdraw Money

Only main flow:
1. user identifies himself by a card

2. system reads the bank ID and account number from card and
validates them

3. user authenticates by PIN

4. system validates that PIN is correct

5. user requests withdrawal of an amount of money

6. system checks that the account balance is high enough

7. system subtracts the requested amount of money from account
balance

8. system returns card and dispenses cash

Suggested names for operations

Datavetenskap

Rogardt Heldal Use Cases - 20 -

System Sequence Diagram
Withdraw Money

ATM:System

identify(card)

authenticate(pin)

:Customer

withdraw(amount)

Datavetenskap

Rogardt Heldal Use Cases - 21 -

Kinds of Sequence Diagrams

• Interaction Diagrams can be used on different
levels:
– System level (“System sequence diagrams”): Interaction

between actors (primary, secondary, …) and system

– Component level: Interaction between components

– Object level: Interaction between objects, maybe in one
system or component

• Notation is always the same

Datavetenskap

Rogardt Heldal Use Cases - 22 -

System Sequence Diagram
Withdraw Money

ATM:System

identify(card)

authenticate(pin)

:Customer

withdraw(amount)

Problem:
Does this diagram
show a realistic
picture of the ATM?

Datavetenskap

Rogardt Heldal Use Cases - 23 -

System Sequence Diagram
Actor

System

Datavetenskap

Rogardt Heldal Use Cases - 24 -

Other Systems

Problem:
Does this
diagram show
all the uses of
the ATM?

NO!

Datavetenskap

Rogardt Heldal Use Cases - 25 -

System Class
• We can consider a system class as a façade for the

whole system.

identify(card)
authenticate(pin)
withdraw(amount)

ATMSystem

Datavetenskap

Rogardt Heldal Use Cases - 26 -

Contract

System operations

Datavetenskap

Rogardt Heldal Use Cases - 27 -

Example: Contract

• Operation: withdraw(amount:int)
• Postcondition:

– If account contains enough cash
 then the balance of the account for the inserted card
 has been decreased by “amount” AND
 the card has been returned AND
 cash has been dispensed
 else the account balance has not been changed AND
 the card has been returned

Datavetenskap

Rogardt Heldal Use Cases - 28 -

Contract Template
• The signature of the operation:

– Name, parameters, return value

• Description of the operation (optional), for instance
– Informal meaning of operation

– Implementation in pseudo-code

• Description of the parameters (optional)

• Description of the operation’s result (optional)

• Cross-reference

• Precondition

• Postcondition

Datavetenskap

Rogardt Heldal Use Cases - 29 -

Use Domain Model to obtain pre- and
post-conditions

• Furthermore, the domain model can be used as the
basis for the creation of the contracts.
– The precondition specifies what has to hold in the domain model

before the call to the operation.

– The postcondition specifies what has to hold in the domain model
after the execution of the call.

Datavetenskap

Rogardt Heldal Use Cases - 30 -

Postcondition
• The postcondition has to specify the following things:

– What instances have been created?

– What attributes have been modified?

– What associations (to be precise, UML links) have been formed or
broken?

– What value is returned from the operation?

Datavetenskap

Rogardt Heldal Use Cases - 31 -

Example: Withdraw Money
• Which attributes are modified?
The balance attribute in the Account concept might be changed.

Account

balance:Integer

Datavetenskap

Rogardt Heldal Use Cases - 32 -

Problem

Write a contract for the operation authenticate.
 …
4. user authenticates himself by PIN
5. system validates that PIN is correct
 …

• 4a. Wrong pin less than 3 times:
– 1. System updates number of tries
– 2. start from action step 3

• 4-8a. Wrong pin 3 times:
– 1. System keeps the card

Datavetenskap

Rogardt Heldal Use Cases - 33 -

Part of the solution
• Operation: Authenticate (userPin: Integer):PinResult

• Cross-ref: Withdraw Money

• Result:
– PinResult::Correct if authentication successful,

– PinResult::Wrong if authentication failed, but further tries are
possible

– PinResult::Abort if authentication failed

• post-condition: ?
<<enumeration>>
 PinResult

Correct
Wrong
Abort

Datavetenskap

Rogardt Heldal Use Cases - 34 -

Solution
• Operation: Authenticate (userPin: Integer): PinResult

• …

• post-condition:
– if userPin was equal to the pin of the inserted card

 then PinResult::Correct has been returned

 else if tries was at most 3

 then tries has been incremented by 1 AND

 PinResult::Wrong has been returned

 else card has been kept AND

 PinResult::Abort has been returned

Datavetenskap

Rogardt Heldal Use Cases - 35 -

More details about Contracts
• In contracts, one often is more precise than in use

cases, even formal.

• On the next slide we show a formal contract written in
Object Constraint Language (OCL) for Withdraw
Money.

• We might come back to OCL later in this course.

Datavetenskap

Rogardt Heldal Use Cases - 36 -

Formal Contract
Context ATMController::giveAmount(amount:long) post:

 if (amount <= bank.getBalance(card.getID())) then

 cashDispenser^giveOutCash(amount)

 and bank.getBalance(card.getID())

 = bank.getBalance@pre(card.getID()) - amount

 and card^returnCard()

 else

 not cashDispenser^giveOutCash(?)

 and bank.getBalance(card.getID())

 = bank.getBalance@pre(card.getID())

 and card^returnCard()

Datavetenskap

Rogardt Heldal Use Cases - 37 -

Problem
• Write a contract for the system operations obtained

from “register on course”.

Datavetenskap

Rogardt Heldal Use Cases - 38 -

Activity diagram

Datavetenskap

Rogardt Heldal Use Cases - 39 -

Activity diagrams

• Can be used to:
• Describe sequences of activities
• Both sequential and parallel

• Can be useful for
– business modelling
– describing the flows of a use case
– …

Datavetenskap

Rogardt Heldal Use Cases - 40 -

Work flow/process

Analysis

Design

Requirements

Test

Implementing

Start point

End point

Waterfall model

Activity

Call action
node

Datavetenskap

Rogardt Heldal Use Cases - 41 -

Action nodes

Some action

Signal name

Accept Event

Time expression

Call action node

Send signal

Accept event action node

Accept time event action

node

Datavetenskap

Rogardt Heldal Use Cases - 42 -

Example

Process

Order

Request

Payment

Payment

confirmed

Process

Order

Cancel

order

Contact

customer

End

of month
Pay out

salary

Datavetenskap

Rogardt Heldal Use Cases - 43 -

Control nodes

Decision node or Merge node

Fork node, join node

Initial node

Activity final

Flow final

Datavetenskap

Rogardt Heldal Use Cases - 44 -

Work flow/process

Analysis

Design

Requirements

Test

Implementing

Start point

End point

Waterfall model

Datavetenskap

Rogardt Heldal Use Cases - 45 -

Decision node

• The output edge whose guard condition is true
is traversed.

[Condition 1]

[Condition 2]

Datavetenskap

Rogardt Heldal Use Cases - 46 -

Insert coins in
the machine

Test if machine
has received the right

amount of money.

Indicate that beverage
can be selected.

Select beverage.

Dispense beverage.

Indicate that beverage
is not available.

[beverage not available]

[beverage available]

Example: Conditions and Iteration

Coffee machine

Datavetenskap

Rogardt Heldal Use Cases - 47 -

Decision input

[true]

[false]

<<decisionInput>>

age > 25

Datavetenskap

Rogardt Heldal Use Cases - 48 -

Pre- and Post-condition

Write grant

application

Address grant

application

Post grant

application

<<localPrecondition>>

address is know

<<localPostcondition>>

Grant application

 is addressed

Send grant application
Precondition: known research area

Postcondition: grant application sent to address

Datavetenskap

Rogardt Heldal Use Cases - 49 -

Activity A. Activity B.

Concurrent fork

Concurrent join

Parallel activities

Datavetenskap

Rogardt Heldal Use Cases - 50 -

”Swimlanes”

Order product
Handle order

Obtain materials

Package order

BillReceive product

Finish order

Pay

Customer Order Processing Store

Product process

Datavetenskap

Rogardt Heldal Use Cases - 51 -

Object nodes

InvoiceSend

invoice

Make

Payment

Send

invoice

Make

Payment

Using pins:

Invoice

One can send objects:

Datavetenskap

Rogardt Heldal Use Cases - 52 -

Object in State

Create taxi

order
Order

[new]

Assign

taxi
Order

[Assign]

Datavetenskap

Rogardt Heldal Use Cases - 53 -

Activity parameters

Order Order

[Delivered]

Accept

payment

Manufacture

product

Deliver

product
Order

[Paid]

Marketing Manufacturing Delivery

Handle order

department

Datavetenskap

Rogardt Heldal Use Cases - 54 -

Activity Diagram

Give card Validate
Card

Enter amount

Wrong pin
less than 3 times

Wrong pin
more than
3 times

Not enough
money on accountTake money

and card

Withdraw Money

Cancel

Enough
money on
account

Correct pin
CardDetails

Datavetenskap

Rogardt Heldal Use Cases - 55 -

Multicast and multireceive
Request for Proposals process

Technical Group Member

Identify need

Request for
Proposal RFP Create Proposal

Proposal
[Candidate]

Assess
Proposals

Proposal
[Accepted]

<<multicast>>

<<multireceive>>

Datavetenskap

Rogardt Heldal Use Cases - 56 -

Activity Diagram

Enter login Enter password

Enter course name

Valid password and
same login less than 3 times Same login three

3 times, but not
correct password or
not valid password

Course not found

...

Course adm

Cancel

Course found

Correct password
and login

Datavetenskap

Rogardt Heldal Use Cases - 57 -

Semantics

• Action nodes execute when
– There is a token simultaneously on each of the

input edges AND

– The input tokens satisfy all of the local action node
preconditions

Action node Action node

Action node

Action node

Does not execute

Action node

executes

Datavetenskap

Rogardt Heldal Use Cases - 58 -

What next?

Essential use cases
Domain model
(contracts)

code

real use cases

further modelling
 interaction diagram
 class diagram
 …

Design Analysis

Datavetenskap

Rogardt Heldal Use Cases - 59 -

Appendix

Datavetenskap

Rogardt Heldal Use Cases - 60 -

Applications of Use Cases

Datavetenskap

Rogardt Heldal Use Cases - 61 -

Problem

• Why use Use Cases?

• In order to:
– Describe the behavior of the system

– Communicate with the customer

– Catch functional requirements on the system

– Obtain the user interface

– Drive the development process, decide what should be done
in each iteration

– Obtain tests for the system

Datavetenskap

Rogardt Heldal Use Cases - 62 -

Communication

Customer DevelopersCreate a dialog between
the customer and
developers.

But also a
dialog among
developers.

Datavetenskap

Rogardt Heldal Use Cases - 63 -

Requirement analysis

• Often these kinds of requirements have to be
identified (FURPS+):
– Functionality

– Usability

– Reliability

– Performance

– Supportability

– ”+” represents further requirements

Datavetenskap

Rogardt Heldal Use Cases - 64 -

Example: ATM
1. ATM saves information about withdrawals
2. Can be given a code
3. Gives customer amount X of money if customer has at least X on the account.
4. Can be given a card
5. Can return a card when withdrawal is finished or when transaction is cancelled.
6. Can make transactions between accounts
7. Can insert money into the account
8. The amount of money inserted should be added to the account
9. Reduce the account by the amount withdrawn.
10. Can choose an amount.
11. Can choose to withdraw.
12. Check amount on account
13. Can obtain a receipt.
14. Can stop the process of withdrawal.
15. Can give code up to three times.
16. If wrong code three times then the ATM keeps the card.
17. …

Datavetenskap

Rogardt Heldal Use Cases - 65 -

Problem
• What is the problem with the list of requirements on

the previous slide?

• Problems:
– How to priorities requirements

– How to group requirements

– Often imprecise

– Hard to obtain an overview

– Is it a complete list of requirements?

– Many!!! Can be several thousands.

Datavetenskap

Rogardt Heldal Use Cases - 66 -

Different kinds of functional
requirements

• Business requirements:
– A customer shall be able to book a taxi via telephone

• System requirements:
– The system should estimate the time until a taxi arrives

• Use cases will help to separate these two types of
requirements, since we write use cases only for
describing system behavior.

• We will obtain system requirements from use cases.

Datavetenskap

Rogardt Heldal Use Cases - 67 -

Grouping Requirements
• Requirements can be grouped in several ways
• One way: Use cases
• For example, Withdraw Money relates to the

requirements:
– R1, R2, R3, …

• Implementing a requirement might not make a system
more useful; implementing a use case does!

• Use cases tackle the problem of making requirements
readable, understandable, and to choose priorities

Datavetenskap

Rogardt Heldal Use Cases - 68 -

Functional requirements

• Use cases capture most functional
requirements.

• But: Some functionality can be ”hidden”
in several/all use cases
– For instance: Logging occurring events

Datavetenskap

Rogardt Heldal Use Cases - 69 -

Dealing with Requirements

• Different ways of dealing with functional
requirements:
– Only having a requirement list

– Only having use cases

– A combination of both

Datavetenskap

Rogardt Heldal Use Cases - 70 -

Example: ATM

Withdraw Money

Check Balance

Transaction
:Customer

Dispose Money

Datavetenskap

Rogardt Heldal Use Cases - 71 -

Use Case/Requirement Matrix

x

x x x x

x

x x x x

x

Withdraw Money Check Balance Transaction Dispose Money

R1

R2

R3

R4

R5

…

Datavetenskap

Rogardt Heldal Use Cases - 72 -

Non-functional requirements
• Non-functional requirements are hard to handle by use

cases, but sometimes one can relate them to use
cases.

• Further documents (apart from use cases) are needed

Datavetenskap

Rogardt Heldal Use Cases - 73 -

Example (1)

• Usability
– ATM should be usable for colour blind persons

• Reliability
– Frequency of failure

• At most one failure per year (or per 10 sec)

– Restart after an error
• When restarting, account balance should be checked

against bank to ensure right value (in case of unfinished
transactions)

Datavetenskap

Rogardt Heldal Use Cases - 74 -

Example (2)

• Supportability
– ATM system should be adaptable to

• Different currencies

• Different languages

• Different bank computer systems

• Different card types

Datavetenskap

Rogardt Heldal Use Cases - 75 -

User interface

• Usually a ”user interface expert” will derive the
user interface from use cases

• For instance:

• … and make a description of the interface

100

300

500

1000

2000

Cancel

Balance

Withdrawal

Datavetenskap

Rogardt Heldal Use Cases - 76 -

Connecting user interface and use
cases

• For instance: ”Customer chooses amount in window A”

• Dangerous: Such use cases are very fragile
concerning changes in user interface

A

B
100

300

500

1000

2000

Cancel

Balance

Withdrawal

Datavetenskap

Rogardt Heldal Use Cases - 77 -

Problem
• Should one consider user interface details when

writing use cases?

• Should use cases contain information about the
interface?

• Should one make the user interface before or after the
use cases?

Datavetenskap

Rogardt Heldal Use Cases - 78 -

Interface first or last?

• Most people agree that use cases should be
written before the user interface is designed

• Exception: Interface can be given, no changes
are possible

• (Some people even recommend designing the
user interface first)

• Interface is important, because customers might
get new ideas by looking at it (less abstract than
use cases, easier to understand, things become
more concrete and more obvious)

Datavetenskap

Rogardt Heldal Use Cases - 79 -

Essential Use Cases

• A use case which abstracts from user
interface, implementation details etc.

• Avoids premature design decisions of how to
develop the system, such as the look of user
interface, whether to use a database etc.

Datavetenskap

Rogardt Heldal Use Cases - 80 -

Summary
• We have considered:

• How to write brief use cases

• How to write complete use cases
– How to write main flow

– How to write alternative flows

– How to write post-conditions

– …

Datavetenskap

Rogardt Heldal Use Cases - 81 -

Role play
• To illustrate one flow through a use case, one can use

a concrete case.

• One can play the interaction between the system and
the actor.

• One person plays the system and for each actor there
is a person playing the actor.

	Lecture 4
	Advance topics
	”Include”
	UML-syntax
	”Extend”
	UML Syntax
	extend
	Inherit relation
	Example
	Uses
	Split
	Vertical split
	When to split
	Actor Specialisation
	Example of Actor Inheritance
	Horizontal Split
	Business Use Cases
	System Sequence Diagram
	Use case: Withdraw Money
	System Sequence Diagram Withdraw Money
	Kinds of Sequence Diagrams
	Slide 22
	Slide 23
	Other Systems
	System Class
	Contract
	Example: Contract
	Contract Template
	Use Domain Model to obtain pre- and post-conditions
	Postcondition
	Example: Withdraw Money
	Problem
	Part of the solution
	Solution
	More details into Contracts
	Formal Contract
	Problem
	Activity diagram
	Activity diagrams
	Work flow/processes
	Action nodes
	Example
	Control nodes
	Slide 44
	Decision node
	Example: Conditions and Iteration
	Decision input
	Pre and Post-condition
	Parallel activities
	”Swimlanes”
	Object nodes
	Object in State
	Activity parameters
	Activity Diagram
	Multicast and multireceive
	Slide 56
	Semantics
	What next?
	Appendix
	Applications of Use Cases
	Slide 61
	Communication
	Requirement analysis
	Example: ATM
	Slide 65
	Different kinds of functional requirements
	Grouping Requirements
	Functional requirements
	Dealing with Requirements
	Slide 70
	Use Case/Requirement Matrix
	Non-functional requirements
	Example (1)
	Example (2)
	User interface
	Connecting user interface and use cases
	Slide 77
	Interface first or last?
	Essential Use Cases
	Summary
	Role play

