
Sequence Diagrams and Class
Diagrams

Student

ID
…

Course

code
…

pre-reqs *

completed *

*

registerOn

registered *

*

*

Grade

Student

ID
…

Course

code
max

pre-reqs *

completed *

*

registerOn

registered *

*

Registrator

courses

students

theStudent

theCourse

*

*

0..1

0..1

*

1
1

1

1

checkRegs()

register(ID,code)

Grade

Student

ID
…

Course

code
maxStudent

Pre-reqs *

completed *

*

registered

*

*

Registrator

courses

students

theStudent

theCourse

*

*

0..1

0..1

*

1
1

1

1

checkRegs()

register(ID,code,pid)

LoginManager

login()

1

1

LogOnInfo

ID
passwd * 1

Grade

pid

Register and
UnRegister

Add Course

Remove course

Student

Adm

Choice

…

n. System gives the option: register and

 unregister

(n+1). Choice: register

(n+2). The student choose to register

…

Alternative Flow

Choice: unregister

1. ….

2. ….

3. ….

Or only deal with registration

Register

UnRegister

Add Course

Remove course

Student

Adm

Register

UnRegister

Add Course

Remove course

Student

Adm

Register

UnRegister

Add Course

Remove course

Student

Adm

login

<<include>>

<<include>>

<<include>>

<<include>>

The same with logout

One
Might
Decide
To
Leave
Out
Login
Since
It
Is
Not
Important
For
Understanding
The
Functionality

1. User register with Id and password

2. System search for a password with the given
login

3. Assume: login and password is correct

4. System generates a unique process Id

5. System return the process Id

Alternative Flow

3a .Assume: Id and password was not correct less
than three times

1. System inform that the id or password was wrong

2. System update the number of try

3. System inform how many more try is possible

4. Go to 1

3-5 Assume: Id and password was wrong tree times

1. Inform the student to contact the course adm

Name: Register

Actor: User

Goal: Register student to course

Description: The student is registered if there
are places left and the student meets the pre-
requistites

1. include login
2. Assume: login succeed
3. user register with student Id, course code and process Id
4. Assume: the process Id is correct
5. System finds student and course
6. Assume: the student exists
7. Assume: the course exists
8. The system checks if there are enough places left on the chosen course
9. Assume: there are enough places
10. The system checks if the student meets the pre-requisites
11. Assume: the student has all the required courses
12. System registers the student to the course
13. System informs student that s/he is registered

Alternative not specified

• Pre: _

• Post: if the user was logged in and the student
existed and the student had the correct pre-
requisites and there were places left on the
course then
 The student was registered to the course

Otherwise

 Nothing has changed in the system

:Register

:User

login(id,passwd)

register (studentId,code,pid)

pid

bool

opt[pid<>o]

Operation Register(studentId,courseId,key):Boolean
Pre: login
Post:
If there was places on the course and student has the
correct course requirement
 then

• a new link between course and student has been created to
registrant that the student take the course

• Return = true

 else
• No changes
• Return = false

:LoginManager loginInfos l:LoginInfo Registrator

login(id,passwd)

Loop[for each l in logininfos]

id2=getID()

passwd2=getPasswd()

break[id==id2&passwd==passwd2]

setProcessID(pid)

pid

0

:Student

sd Login

:Registrator students s:student

findStudent(id)

Loop[for each s in students]

sid=getID()

break[id==sid]

s

null

FindStudent

:Registrator courses c:Course

findCourse(id)

Loop[for each c in courses]

cid=getID()

break[id==cid]

c

null

FindCourse

Summary

• One can produce the concept/class sequence
diagram from

– Use case

– System sequence diagram

– Contract of the system operation

– Domain model (find concept)

The Same Less Abstract …

Initial Class Diagram

Book

ISBN

title

author

Exemplar

* exemplars

1

Lending

startDate

lendingPeriod

actualReturnDate

Customer

name

* lendings

1

runningLending

0..1 0..1

formerLendings

* 0..1

* *

waitingCustomers

{ordered}

ReturnController

*
remainingLendings

finishedLendings
*

identCustomer(String)

 :Lending[*]

returnBook(Lending)

finishReturn()

0..1

0..1

treatedCustomer

fee:Real

lentExemplar

System Sequence Diagram

 :LibSystem

identCustomer(name)

returnBook(l:Lending)

Librarian

loop

runningLendings:Lending[*]

finishReturn()

accumFee:Real

User Interface

User Interface:
Dialog for Returning Books

Return books

• UML2 and the Unified Process

• Applying UML and Patterns

• ….

• ….

• ….

Cancel OK

Fee: 4712kr

Selected, to be
returned

Class Diagram with Dialog

Book

ISBN

title

author

Exemplar

* exemplars

1

Lending

startDate

lendingPeriod

actualReturnDate

Customer

name

* lendings

1

runningLending

0..1 0..1

formerLendings

* 0..1

* *

waitingCustomers

{ordered}

ReturnController

0..1

0..1

*
remainingLendings

finishedLendings
*

identCustomer(String)

 :Lending[*]

returnBook(Lending)

finishReturn()

treatedCustomer

fee:Real

lentExemplar

ReturnDialog

pressedOk()

pressedCancel()

selectedBook(Lending)

Button

ok 1 cancel 1

1

LendingList

1

*

Has to observe
ReturnController

Label

1 feeLabel

Class Diagram

Book

ISBN

title

author

Exemplar

* exemplars

1

Lending

startDate

lendingPeriod

actualReturnDate

Customer

name

* lendings

1

runningLending

0..1 0..1

formerLendings

* 0..1

* *

waitingCustomers

{ordered}

ReturnController

0..1

0..1

*
remainingLendings

finishedLendings
*

identCustomer(String)

 :Lending[*]

returnBook(Lending)

finishReturn()

treatedCustomer

fee:Real

lentExemplar

ReturnDialog

pressedOk()

pressedCancel()

selectedBook(Lending)

Button

ok 1 cancel 1

LendingList

1

1

*

 Observer

<<interface>>

update(Observable o)

Observable

notifyObservers()

*

Label

1 feeLabel

What happens when a book is selected in
the dialog?

• Draw a sequence diagram …

• You can leave out those details of
ReturnController:returnBook that were
already shown earlier

:Lending

selectedBook(l)

:ReturnDialog rc:ReturnController

returnBook(l)

ref

returnBook

notifyObserver()
update(rc)

update()

getFinishedLendings()

getRemainingLendings()

Domain model

class model

Classes for implementation
 more details
 patters

UML Classes: Visibility
Point

- x:double

- y:double

 + move(dist:Point):void

Mapping visibility to java:
• - -> private
• # -> protected
• + -> public
• ~ -> package

(In this case the semantics of -,#,+,~ will be the one
of Java.)

UML attribute

UML:
 [visibility] name [multiplicity] [:type] [= initial value]

[{properties}]

Properties could be:
– changeable (Variable may be changed.)
– addOnly (When multiplicity is bigger than one you can add more values, but

not change or remove values.)
– frozen (Cannot be changed after it has been initialized.)

• Example:

– x : int {frozen}

Operations/methods

 UML:

 [visibility] name [(parameter list)] [: return

type] [{properties}]

 You can have zero or more parameters. Syntax for parameters:
 [direction] name : type [= default value]

– direction: in, out, inout

• Example of a property

– isQuery (no ”side effects”)

Relations

• All the associations we consider when drawing
domain models can also be used in class diagrams.

• But there are some interesting issues to consider …

Navigability

Point Line 1 2

Line knows Point,

but Point doesn’t know

Line.

Association constraint

Constraint:
• changeable (Links may be changed.)
• addOnly (New links can be added by an object on the opposite

side of the association.)
• frozen (When new links have been added from an object on the

opposite side of the association, they cannot be changed.)
• ordered (Has a certain order)
• bag (multisets instead of sets)
• …

• BridgePoint do not contain properties

Company Person
{ordered}

Class methods and class variables

Account

-interestRate:double

-balance:double

 +changeInterestRate(newinterestrate:double)

Association names UML

Person Company * *
employees employers

works for

Association name, Verb phrase

Role name,

Noun phrase

UML:

Person works for company

Can be read only one way

Association names BridgePoint

Employee Company * *
has currently works for

R1

Association label

Verb phrase

BridgePoint:

•Association label play a key role in BridgePoint.

•It is used in the OAL Object Action Language (see later slides).

• To create link between objects (link is an instance of an association)

• To obtain object over a link

•BridgePoint generate automatically association label.

Employee work for company

Company has currently employees

Can be read in both direction

Keyletters

Bok
{1,Bok}

Tags:
 Class number
 Keyletters

Class number is produced automatically by BridgePoint. As far as

I know we don’t need to consider class numbers for the project.

A key letter will also be produces autmatically, but this one you should

change to the same name as the class name!

• Keyletters is used in OAL

Missing elements

• At the moment BridgePoint do not handle
class attribute and class operation and
properties.

Class templates

Stack

+ empty():Boolean{isQuery}

+ push(e:T):Void

+ pop():T

- n: int

- s : T[size]

T

size:int

PersonStack

<<bind>>(Customer,10)

Stack<Person,10>

