
Testing, debugging &
verification: Testing 2

Atze van der Ploeg

Who from GU want some store credit??

Admin stuff:

● Sign up for the google group!
● Make sure you are registered!
● Exercise session this afternoon! Bring laptops!

Previously on TDV

Terminology : Bug, Specification, Failure, Correct, Testing,
Debugging, (Formal) Verification, Supplier, Client,
Precondition, Postcondition, Unit test, Test suite, Oracle

When do we have enough tests?
public static boolean and(boolean a, boolean b)

Requires: Nothing (Input is well typed)

Ensures: The output is true if and only if both inputs are true and false otherwise.

Tests: ?

When do we have enough tests?
public static boolean and(boolean a, boolean b)

Requires: Nothing (Input is well typed)

Ensures: The output is true if and only if both inputs are true and false otherwise.

Tests:
and(false, false) == false
and(true, false) == false
and(false, true) == false
and(true, true) == true

When do we have enough tests?
public static boolean and(boolean a, boolean b)

Requires: Nothing (Input is well typed)

Ensures: The output is true if and only if both inputs are true and false otherwise.

Tests:
and(false, false) == false
and(true, false) == false
and(false, true) == false
and(true, true) == true

When do we have enough tests?
public static int[] sort(int[] arr)

When do we have enough tests?
public static int[] sort(int[] arr)

Infite (or really big) number of possible inputs!
Cannot test all!

When do we have enough tests?
public static int[] sort(int[] arr)

Infite (or really big) number of possible inputs!
Cannot test all!

An answer: coverage criteria
How much of the code is covered by the set of tests?

Different ways to define “covered”

Example: russian multiplication
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Statement coverage
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Are all statements is executed in some test?

Tests for full statement coverage here?

Statement coverage
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Tests for full statement coverage here?

russianMultiplication(1,0) == 0

Are all statements is executed in some test?

Control flow graph
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Make graph from code:
● Node = statement or while/if/for start
● Edge from a to b iff next execution step after a can b
● Label on edge = condition which should hold to travese edge (or no condition)

Control flow graph
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Make graph from code:
● Node = statement or while/if/for start
● Edge from a to b iff next execution step after a can be b
● Label on edge = condition which should hold to travese edge (or no condition)

Execution path
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

A path in a graph is a sequence of nodes,
such that there is an edge between any 2 subsequent nodes in the path.
(Can be infinite.)

Execution path is a path through a control flow graph

Execution path - example
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Each test case has an execution path.

russianMultiplication(1,0) == 0

Execution path - example
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Each test case has an execution path.

russianMultiplication(1,0) == 0

Note all nodes are visited, so statement coverage

Branch coverage
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Branch coverage = are all edges is taken in some test case?

Test cases for full branch coverage here?

Branch coverage
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Branch coverage = which % of edges is taken in all test cases?

russianMultiplication(2,0) == 0

Branch coverage
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Branch coverage = which % of edges is taken in all test cases?

russianMultiplication(2,0) == 0

To visit all edges, we need to visit all nodes, so branch coverage implies statement coverage

Path coverage
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Path coverage = Are all paths taken in some test case?

Path coverage
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Path coverage = Are all paths taken in some test case?

Usually not realistic: > 2^31 paths here!

Mini quiz: Coverage
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Do the following individual inputs achieve full
statement coverage, branch coverage, path coverage?
a = 3, b = 3
a = 0, b = 2
a = 4, b = 1

Mini quiz: Coverage
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Do the following individual inputs achieve full
statement coverage, branch coverage, path coverage?
a = 3, b = 3 SC
a = 0, b = 2 None
a = 4, b = 1 SC and BC

How to find good unit tests?
An anwer: Input space partioning

Devide input space into regions with for which the program acts “similar”.

Take an some inputs from each region

More math training!

More math training!

More math training!

Example: Partitions of natural numbers

{prime numbers, non-prime numbers}

{even,odd}

{ {x | x % 3 == 0} , {x | x % 3 == 1}, {x | x % 3 == 2}}

Example: Partitions of arrays
Is this a partition of int[]?

{ {null}, {sorted in ascending order}, {sorted in descending order}, {unsorted}}

Example: Partitions of arrays
Is this a partition of int[]?

{ {null}, {sorted in non-decreasing order}, {sorted in descreasing order}, {not
sorted}}

Let’s try
findElement (int[] arr, int elem)

Partitions:

r = {{ empty array}, {non-empty arrays}}

q = {{null}, {non-null arrays}}

s = {{null}, {x | x.length == 0}, {x | x.length == 1},

{x | x.length > 1}}

r is a sub-partition of q

Strategy for finding good inputs
1. Devide input space into regions with for which the program acts “similar”.
2. Choose inputs from each regions, especially from borders

Example:
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

Input partition?

Example:
int russianMultiplication(int a, int b){

 int z = 0;

 while(a != 0){

 if(a%2 != 0){

 z = z+b;

 }

 a = a/2;

 b = b*2;

 }

 return z;

}

For example:
{ {(0,0}, {(x,y) | x > 0, y > 0} , {(x,y) | x < 0, y < 0}, {(x,y) | x < 0, y > 0} , {(x,y) | x < 0, y > 0}}

More coverage critaria
Logic coverage:

Based on boolean (sub-)expressions in the program.

Decision coverage: Take all outcomes of boolean expressions where the program
branches on (i.e. from while, if, for) Do all of them occur in a test?

More coverage critaria
Logic coverage:

Based on boolean (sub-)expressions in the program.

Decision coverage: Take all outcomes of boolean expressions where the program
branches on (i.e. from while, if, for) Do all of them occur in a test?

Seems familiar?

More coverage critaria
Logic coverage:

Based on boolean (sub-)expressions in the program.

Decision coverage: Take all outcomes of boolean expressions where the program
branches on (i.e. from while, if, for) Do all of them occur in a test?

Seems familiar?

decision coverage <-> branch coverage...

More coverage critaria
Logic coverage:

Based on the boolean (sub-)expressions in the program.

Decision coverage: Take all outcomes of boolean expressions where the program
branches on (i.e. from while, if, for) Do all of them occur in a test?

Seems familiar?

Full decision coverage <-> full branch coverage...

Note: Many languages have implicit decisions! Type-checks, null checks etc.

Decision coverage - example
Program contains a bit :

if (a < c || b > c) {

 ...

}

Need one test where this evals to true, one where false.

For example,

a = 0, c = 2, b = 1

a = 10, c = 0, b = 1

Condition coverage
Decision coverage: Take all outcomes of boolean expressions where the program
branches on (i.e. from while, if, for) Do all of them occur in a test?

Condition coverage: ... Take all outcomes of atomic boolean sub-expressions
that occur in a decision. (atomic = contains no boolean sub-expressions) Do all of
them occur in a test?

if ((a < b) || D) && (m ≥ n ∗ o) ...

atomic boolean subexpressions: (a < b), D, (m >= n * o)

Condition coverage
Decision coverage: Take all outcomes of boolean expressions where the program
branches on (i.e. from while, if, for) Do all of them occur in a test?

Condition coverage: ... Take all outcomes of atomic boolean sub-expressions
that occur in a decision. (atomic = contains no boolean sub-expressions) Do all of
them occur in a test?

if ((a < b) || D) && (m ≥ n ∗ o) ...

atomic boolean subexpressions: (a < b), D, (m >= n * o),

Note: Condition does not subsume decision, nor vice versa

Example: if (a || b) : ((a = true, b = false), (a = false, b = true)) has CC, but not DC

Condition Decision coverage
Decision coverage: Take all outcomes of boolean expressions where the program
branches on (i.e. from while, if, for) Do all of them occur in a test?

Condition coverage: ... Take all outcomes of atomic boolean sub-expressions
that occur in a decision. (atomic = contains no boolean sub-expressions) Do all of
them occur in a test?

Condition decision coverage: Take all outcomes of all decisions and conditions in
these decision. Do all outcomes occur in a test?

Condition Decision coverage
Decision coverage: Take all outcomes of boolean expressions where the program
branches on (i.e. from while, if, for) Do all of them occur in a test?

Condition coverage: ... Take all outcomes of atomic boolean sub-expressions
that occur in a decision. (atomic = contains no boolean sub-expressions) Do all of
them occur in a test?

Condition decision coverage: Take all outcomes of all decisions and conditions in
these decision. Do all outcomes occur in a test?

if ((a < b) || D) && (m ≥ n ∗ o) ...

Independent conditions
conditions are independent if they cannot influence each other)

independent?
a || b || c
(a > b) || (a <= b)
x.length > 0 && x.contains(1)

Independent conditions
conditions are independent if they cannot influence each other)

independent?
a || b || c --- maybe
(a > b) || (a <= b) --- No
x.length > 0 && x.contains(1) -- No

Modified Condition Decision Coverage (MCDC)
Condition decision coverage: Take all outcomes of all decisions and conditions in
these decision. Do all outcomes occur in a test?

Modified condition decision coverage:

Requirement: conditions are independent (do not influence each other)

For each condition c, in each decision d, there is a test such that:
● There is a test such that c == true
● There is a test such that c == false
● If the result of d when c == true is x, then the result of d when c == false

must be !x.
● All other conditions in d evaluate identically in both test cases.

Modified Condition Decision Coverage (MCDC)
Requirement: conditions are independent (do not influence each other)

For each condition c, in each decision d, there is a test such that:
● There is a test such that c == true
● There is a test such that c == false
● If the result of d when c == true is x, then the result of d when c == false

must be !x.
● All other conditions in d evaluate identically in both test cases.

Let’s try: if ((a < b) || D) && (m ≥ n ∗ o) ...

Modified Condition Decision Coverage (MCDC)
Requirement: conditions are independent (do not influence each other)

For each condition c, in each decision d, there is a test such that:
● There is a test such that c == true
● There is a test such that c == false
● If the result of d when c == true is x, then the result of d when c == false

must be !x.
● All other conditions in d evaluate identically in both test cases.

Let’s try: if ((a < b) || D) && (m ≥ n ∗ o) ...

Modified Condition Decision Coverage (MCDC)
Requirement: conditions are independent (do not influence each other)

For each condition c, in each decision d, there is a test such that:
● There is a test such that c == true
● There is a test such that c == false
● If the result of d when c == true is x, then the result of d when c == false

must be !x.
● All other conditions in d evaluate identically in both test cases.

Let’s try: if ((a < b) || D) && (m ≥ n ∗ o) ...

a = 1, b = 2, D = false, m = 10, n = 1, o = 1
a = 2, b = 1, D = false, m = 10, n = 1, o = 1

MCDC is required for some aviation software
MCDC is required in the avionics certification standard DO-178 as the criterion to
test adequately Level A software (failure of which is classified as ‘Catastrophic’).

MCDC is required for some aviation software
MCDC is required in the avionics certification standard DO-178 as the criterion to
test adequately Level A software (failure of which is classified as ‘Catastrophic’).

Quiz: Logical decision coverage
Condition: if(x < 1 || y > z)

Do the following satisfy, decision, condition, condition decision, MCDC?

[x=0, y=0, z=1] and [x=2, y=2, z=1]

[x=2, y=2, z=1] and [x=2, y=0, z=1]

[x=2, y=2, z=2], [x=0, y=0, z=1], [x=2, y=0, z=0], [x=2, y=2, z=1]

Quiz: Logical decision coverage
Condition: if(x < 1 || y > z)

Do the following satify, decision, condition, condition decision, MCDC?

[x=0, y=0, z=1] and [x=2, y=2, z=1]

[x=2, y=2, z=1] and [x=2, y=0, z=1]

[x=2, y=2, z=2], [x=0, y=0, z=1], [x=2, y=0, z=0], [x=2, y=2, z=1]

CC
DC
CC,DC, DCD, MDCD

Recap
How do we know we have enough tests?

Answer: Coverage criteria:

● Control flow based : Statement, Branch, Path
● Logic based : Decision, Condition, Decision condition, Modified CDC

How can find tests? (even without code)

Answer: Input space partioning, devide inputs “equally intresting” parts, tests from
each part and borders

