
CompCert
Most impressive formal
verification effort to date

Atze van der Ploeg

Some slides stolen from: link

http://research.microsoft.com/en-us/um/redmond/events/SS2011/slides/Friday/Xavier_Leroy.pdf

What is CompCert?

● A formally verified compiler from (a subset of) C to PowerPC assembly
● Programmed and proven (largely) in the Coq Systems
● Most impresive software verification effort to date (?)
● Authors: Xavier Leroy et al
● Disclaimer: I have nothing to do with this project :)

More info

http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf

Why CompCert?
● Most avionics, car, space embedded software written in C
● Need high-assurance: bugs can cost lives!
● Lots of effort spend getting certainty about this software source code (tests,

formal methods, code review etc.)
● Then send to compiler
● What kind of certainty do we have about the resulting machine code?

Why CompCert?
To improve the quality of C compilers, we created Csmith, a randomized test-case
generation tool, and spent three years using it to find compiler bugs. During this
period we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also to silently
generate wrong code when presented with valid input.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011

What does a formally verified compiler mean?

S ⇓ B

Source program S (in C) can exhibit behavior B.

Relies on a formal
specification of the
C language!

Behavior includes system calls with their input/results, errors, non-
termination.

Example behavior:

1. Read 0 from terminal
2. Send network message 80234 to 238924
3. Read 55 from terminal
4. Crash

What does a formally verified compiler mean?

T ⇓ B

Target program T (in assembly) can exhibit behavior B.
Relies on a formal
specification of the
assembly language!

The compiler is a mathematical function, compile, of
type: C -> assembly

Mathematical statement, 1 st attempt:

A compiler is correct iff: ∀ b : Behavior, S ⇓ B <-> compile(S) ⇓ B

What is a formally verified compiler?
Mathematical statement, 1 st attempt:

A compiler is correct iff: ∀ b : Behavior, S ⇓ B <-> compile(S) ⇓ B

Too strict! Compiler may makes choices, optimize errors away!

Mathematical statement:

A compiler is correct iff:

safe S → ∀ b : Behavior, compile(S) ⇓ B → S ⇓ B

Safe means program cannot crash

A formally verified compiler is:

● A computer program implementing the function compile
● A proof that: safe S → ∀ b : Behavior, compile(S) ⇓ B → S ⇓ B

How do we do that?

● Program compiler and prove the statement in Coq
● Extract OCaml code from Coq (erase proof)
● Compile OCaml code -> compiler

Does it work?
The striking thing about our CompCert results is that the middleend bugs we
found in all other compilers are absent. As of early 2011, the under-
development version of CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack of trying: we have
devoted about six CPU-years to the task. The apparent unbreakability of
CompCert supports a strong argument that developing compiler optimizations
within a proof framework, where safety checks are explicit and machine-
checked, has tangible benefits for compiler users. (PLDI 2011)

http://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf

CompCert overview

Still not verified

● Parsing & Printing
● Assembler
● OCaml compiler!
● Hardware(?)
● OS

But still... a lot more certainty than with
GCC

CompCert

● Verified C compiler
● Relies on trusted assembler, OCaml compiler
● Seems much more bug-free than other compilers!

