
Testing, debugging & 
verification: Testing 2

Atze van der Ploeg



Who from GU want some store credit??



Admin stuff:

● Sign up for the google group!
● Make sure you are registered!
● Exercise session this afternoon! Bring laptops!



Previously on TDV

Terminology : Bug, Specification, Failure, Correct, Testing, 
Debugging, (Formal) Verification, Supplier, Client, 
Precondition, Postcondition, Unit test, Test suite, Oracle



When do we have enough tests?
public static boolean and(boolean a, boolean b)

Requires:  Nothing (Input is well typed)

Ensures: The output is true if and only if both inputs are true and false otherwise.

Tests: ?
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When do we have enough tests?
public static int[] sort(int[] arr)
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When do we have enough tests?
public static int[] sort(int[] arr)

Infite (or really big) number of possible inputs! 
Cannot test all!



An answer: coverage criteria
How much of the code is covered by the set of tests?

Different ways to define “covered”



Example: russian multiplication
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}



Statement coverage
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Are all statements is executed in some test?

Tests for full statement coverage here?



Statement coverage
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Tests for full statement coverage here?

russianMultiplication(1,0) == 0

Are all statements is executed in some test?



Control flow graph
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Make graph from code: 
● Node = statement or while/if/for start
● Edge from a to b iff next execution step after a can b
● Label on edge = condition which should hold to travese edge (or no condition) 



Control flow graph
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Make graph from code: 
● Node = statement or while/if/for start
● Edge from a to b iff next execution step after a can be b
● Label on edge = condition which should hold to travese edge (or no condition) 



Execution path
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

A path in a graph is a sequence of nodes, 
such that there is an edge between any 2 subsequent nodes in the path.
(Can be infinite.)

Execution path is a path through a control flow graph 



Execution path - example
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Each test case has an execution path.

russianMultiplication(1,0) == 0



Execution path - example
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Each test case has an execution path.

russianMultiplication(1,0) == 0

Note all nodes are visited, so statement coverage



Branch coverage
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Branch coverage = are all edges is taken in some test case?

Test cases for full branch coverage here?



Branch coverage
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Branch coverage = which % of edges is taken in all test cases?

russianMultiplication(2,0) == 0



Branch coverage
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Branch coverage = which % of edges is taken in all test cases?

russianMultiplication(2,0) == 0

To visit all edges, we need to visit all nodes, so branch coverage implies statement coverage



Path coverage
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Path coverage = Are all paths taken in some test case?



Path coverage
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Path coverage = Are all paths taken in some test case?

Usually not realistic: > 2^31 paths here!



Mini quiz: Coverage
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Do the following individual inputs achieve full 
statement coverage, branch coverage, path coverage?
a = 3, b = 3
a = 0, b = 2
a = 4, b = 1



Mini quiz: Coverage
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Do the following individual inputs achieve full 
statement coverage, branch coverage, path coverage?
a = 3, b = 3 SC
a = 0, b = 2 None
a = 4, b = 1 SC and BC



How to find good unit tests?
An anwer: Input space partioning

Devide input space into regions with for which the program acts “similar”.

Take an some inputs from each region



More math training!
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More math training!



Example: Partitions of natural numbers

{prime numbers, non-prime numbers}

{even,odd}

{ {x | x % 3 == 0} , {x | x % 3 == 1}, {x | x % 3 == 2}}



Example: Partitions of arrays
Is this a partition of int[]?

{ {null}, {sorted in ascending order}, {sorted in descending order}, {unsorted}} 



Example: Partitions of arrays
Is this a partition of int[]?

{ {null}, {sorted in non-decreasing order}, {sorted in descreasing order}, {not 
sorted}} 



Let’s try
findElement (int[] arr, int elem)

Partitions:

r = {{ empty array}, {non-empty arrays}}

q = {{null}, {non-null arrays}}

s = {{null}, {x | x.length == 0}, {x | x.length == 1}, 

{x | x.length > 1}}

r is a sub-partition of q



Strategy for finding good inputs
1. Devide input space into regions with for which the program acts “similar”.
2. Choose inputs from each regions, especially from borders



Example: 
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

Input partition?



Example: 
int russianMultiplication(int a, int b){

  int z = 0;

  while(a != 0){

    if(a%2 != 0){

      z = z+b;

    }

    a = a/2;

    b = b*2;

  }

  return z;

}

For example: 
{ {(0,0}, {(x,y) | x > 0, y > 0} , {(x,y) | x < 0, y < 0}, {(x,y) | x < 0, y > 0} , {(x,y) | x < 0, y > 0}}



More coverage critaria 
Logic coverage:

Based on boolean (sub-)expressions in the program.

Decision coverage: Take all outcomes of boolean expressions where the program 
branches on (i.e. from while, if, for) Do all of them occur in a test?
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More coverage critaria 
Logic coverage:

Based on the boolean (sub-)expressions in the program.

Decision coverage: Take all outcomes of boolean expressions where the program 
branches on (i.e. from while, if, for) Do all of them occur in a test?

Seems familiar?

Full decision coverage <-> full branch coverage...

Note: Many languages have implicit decisions! Type-checks, null checks etc.



Decision coverage - example
Program contains a bit : 

if ( a < c || b > c) {

  ...

}

Need one test where this evals to true, one where false. 

For example, 

a = 0, c = 2, b = 1

a = 10, c = 0, b = 1



Condition coverage
Decision coverage: Take all outcomes of boolean expressions where the program 
branches on (i.e. from while, if, for) Do all of them occur in a test?

Condition coverage: ... Take all outcomes of atomic boolean sub-expressions  
that occur in a decision. (atomic = contains no boolean sub-expressions) Do all of 
them occur in a test?

if ((a < b) || D) && (m ≥ n ∗ o) ...

atomic boolean subexpressions: (a < b), D, (m >= n * o)



Condition coverage
Decision coverage: Take all outcomes of boolean expressions where the program 
branches on (i.e. from while, if, for) Do all of them occur in a test?

Condition coverage: ... Take all outcomes of atomic boolean sub-expressions  
that occur in a decision. (atomic = contains no boolean sub-expressions) Do all of 
them occur in a test?

if ((a < b) || D) && (m ≥ n ∗ o) ...

atomic boolean subexpressions: (a < b), D, (m >= n * o), 

Note: Condition does not subsume decision, nor vice versa

Example: if (a || b) : ((a = true, b = false), (a = false, b = true)) has CC, but not DC



Condition Decision coverage
Decision coverage: Take all outcomes of boolean expressions where the program 
branches on (i.e. from while, if, for) Do all of them occur in a test?

Condition coverage: ... Take all outcomes of atomic boolean sub-expressions  
that occur in a decision. (atomic = contains no boolean sub-expressions) Do all of 
them occur in a test?

Condition decision coverage: Take all outcomes of all decisions and conditions in 
these decision. Do all outcomes occur in a test?



Condition Decision coverage
Decision coverage: Take all outcomes of boolean expressions where the program 
branches on (i.e. from while, if, for) Do all of them occur in a test?

Condition coverage: ... Take all outcomes of atomic boolean sub-expressions  
that occur in a decision. (atomic = contains no boolean sub-expressions) Do all of 
them occur in a test?

Condition decision coverage: Take all outcomes of all decisions and conditions in 
these decision. Do all outcomes occur in a test?

if ((a < b) || D) && (m ≥ n ∗ o) ...



Independent conditions
conditions are independent if they cannot influence each other)

independent? 
a || b || c
(a > b) || (a <= b)
x.length > 0 && x.contains(1)



Independent conditions
conditions are independent if they cannot influence each other)

independent? 
a || b || c     --- maybe
(a > b) || (a <= b)  --- No
x.length > 0 && x.contains(1) -- No



Modified Condition Decision Coverage (MCDC)
Condition decision coverage: Take all outcomes of all decisions and conditions in 
these decision. Do all outcomes occur in a test?

Modified condition decision coverage: 

Requirement: conditions are independent (do not influence each other)

For each condition c, in each decision d, there is a test such that:
● There is a test such that c == true 
● There is a test such that c == false
● If the result of d when c == true is x, then the result of d when c == false 

must be !x. 
● All other conditions in d evaluate identically in both test cases.
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Modified Condition Decision Coverage (MCDC)
Requirement: conditions are independent (do not influence each other)

For each condition c, in each decision d, there is a test such that:
● There is a test such that c == true 
● There is a test such that c == false
● If the result of d when c == true is x, then the result of d when c == false 

must be !x. 
● All other conditions in d evaluate identically in both test cases.

Let’s try: if ((a < b) || D) && (m ≥ n ∗ o) ...

a = 1, b = 2, D = false, m = 10, n = 1, o = 1
a = 2, b = 1, D = false, m = 10, n = 1, o = 1



MCDC is required for some aviation software
MCDC is required in the avionics certification standard DO-178 as the criterion to 
test adequately Level A software (failure of which is classified as ‘Catastrophic’).



MCDC is required for some aviation software
MCDC is required in the avionics certification standard DO-178 as the criterion to 
test adequately Level A software (failure of which is classified as ‘Catastrophic’).



Quiz: Logical decision coverage
Condition: if(x < 1 || y > z)

Do the following satisfy, decision, condition, condition decision, MCDC?

[x=0, y=0, z=1] and [x=2, y=2, z=1]

[x=2, y=2, z=1] and [x=2, y=0, z=1]

[x=2, y=2, z=2], [x=0, y=0, z=1], [x=2, y=0, z=0], [x=2, y=2, z=1]



Quiz: Logical decision coverage
Condition: if(x < 1 || y > z)

Do the following satify, decision, condition, condition decision, MCDC?

[x=0, y=0, z=1] and [x=2, y=2, z=1]

[x=2, y=2, z=1] and [x=2, y=0, z=1]

[x=2, y=2, z=2], [x=0, y=0, z=1], [x=2, y=0, z=0], [x=2, y=2, z=1]

CC
DC
CC,DC, DCD, MDCD



Recap
How do we know we have enough tests?

Answer: Coverage criteria:

● Control flow based : Statement, Branch, Path
● Logic based : Decision, Condition, Decision condition, Modified CDC

How can find tests? (even without code)

Answer: Input space partioning, devide inputs “equally intresting” parts, tests from 
each part and borders


