
Formal specification
Testing, debugging & Verification

Atze van der Ploeg

Today
● Formal specification: what and why
● A first glancy at Dafny
● Intro/Refresher on logic

Recall: Contract, bug

Bug = failure to meet specification

Specification = Contract:
Requires: What the client must ensure
Ensures: What the supplier must ensure

Bug = Breach of contract

Example, last week:
Java object specification:

public int hashCode()

● ...
● If two objects are equal according to the equals(Object) method, then calling the

hashCode method on each of the two objects must produce the same integer result.
● ...

Last week there was a breach of contract!

Bart and graduated bart where equal, but different hash
code

How could we have detected this bug?

Aside: Check contract at runtime! (assertions)
class CheckContractStudent extends Student {
 public int equals(Object other) {
 boolean res = super.equals(other);
 assert !res || hashCode() == other.hashCode(); }
 return res;
 }
}

Assertions can be turned on an off (java -ea enables them)

Good idea, but problems:
● equals might not be called
● Runtime overhead
● Runtime check does not give certainty!

How could we have detected this bug?
Unit test: Must have specific test case for this to detect it

Property based testing:

● Generate random students
● if they are equal check if hashCode also equal

Assertions: Does not give safety, only detects problems

Conclusion: Hard to detect this bug (exept if you know what you are looking for)

Formal specification
Solution:

● Write specification in formal language
● (Automatically) prove that there can never be

breach reach of contract
● Reject program otherwise

Formal verification programs

Program Usage Used in Industry? Notes

Hol/Isabelle Math & programming Sometimes (link1)

Ada/SPARK Programming Yes (link1, link2) Subset of Ada

Dafny Programming No? Java-like programming, this course

Coq Math & Programming Sometimes (link) Dependent type theory

Agda Math & Programming Sometimes (link) Dependent type theory, developed at
Chalmers!

Dependent type theory gives that
Spec lang = implementation language

All are much more researchy than mainstream
programming

https://en.wikipedia.org/wiki/Isabelle_(proof_assistant)
https://en.wikipedia.org/wiki/SPARK_(programming_language)
http://www.adacore.com/sparkpro/
https://coq.inria.fr/faq#htoc15
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.AIMX?action=download&upname=AIM10-YK.pdf

Why are we using Dafny?

It is a research project that no-one in industry uses?

● Very similar to SPARK/Ada, which is used in Industry
● Easier to learn because it is Java like
● Knowledge about formal specification/verification is useful,

even if you will not regularly use Isabelle/Dafny/Coq/etc. : it
enables precise thinking

Formal specification - example
Informal Specification:

public int hashCode()

Requires: Nothing
Ensures: If two objects are equal according to the equals(Object) method, then calling the
hashCode method on each of the two objects must produce the same integer result.

Formal Specification

Requires: Nothing
Ensures: ∀x y : Student, x.equals(y) ⇒ x.hashCode() = y.hashCode()

Demo!

Dafny says no
datatype Student = Student(firstName : string, lastName : string, number : int, graduated : bool)

function hashCode(a : Student) : int

{

 a.number % 5 + if a.graduated then 15 else 31

}

function equals(a : Student, b : Student) : bool

{

 a.number == b.number && a.firstName == b.firstName

}

method Main() {

 assert forall x, y : Student :: equals(x,y) ==> hashCode(x) == hashCode(y);

}

Dafny says yes
datatype Student = Student(firstName : string, lastName : string, number : int, graduated : bool)

function hashCode(a : Student) : int
{
 a.number % 5
}

function equals(a : Student, b : Student) : bool
{
 a.number == b.number && a.firstName == b.firstName
}

method Main() {
 assert forall x, y : Student :: equals(x,y) ==> hashCode(x) == hashCode(y);
}

Dafny
Java-like language

(Automatically)
Proves that formal specification will never be violated

Also proves absence of runtime errors (implicit in formal specification):

● Non-Termination
● Array index out of bound
● Dereference null

Another motivating example: Zune leap year bug

year = ORIGINYEAR; /* = 1980 */

while (days > 365)
{
 if (IsLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 }
 else {
 days -= 365;
 year += 1;
 }
}

● Zune was a portable media player released by
Microsoft (ipod competitor)

● At approximately midnight Pacific Standard Time,
on December 31, 2008, all Zune 30s froze

● Problem: compute year from number of days since
1980 looped

● The official fix was to drain the device battery and
then recharge after midday GMT on 1 January
2009

Our running example: ATM.dfy
class ATM {

 // fields:

 var insertedCard : BankCard;

 var wrongPINCounter : int;

 var customerAuthenticated : bool;

 // methods:

 method insertCard (card : BankCard) { ... }

 method enterPIN (pin : int) { ... } ...

}

Informal spec
Informal specification of enterpin(int pin):

“Enter the PIN that belongs to the currently inserted
bank card into the ATM.

 If a wrong PIN is entered three times in a row, the card
is invalidated and confiscated.

After having entered the correct PIN, the customer is
regarded as authenticated.“

Making it a bit more formal

enterpin(int pin)

Requires : Card is inserted, user not yet authenticated

Ensures:
● If pin is correct then the user is authenticated
● If pin is incorrect and wrongPINCounter < 2 then wrongPINCounter is increased by 1 and user is not

authenticated
● If pin is incorrect and wrongPINCounter >= 2 then card is confiscated and user is not authenticated

Let’s try
method insertCard(card:BankCard)

class ATM {

 // fields:

 var insertedCard : BankCard;

 var wrongPINCounter : int;

 var customerAuthenticated : bool;

 // methods:

 method insertCard (card : BankCard) { ... }

 method enterPIN (pin : int) { ... }

...

}Informal spec:
“Inserts a bank card into the ATM if the card slot
is free and provided the card is valid.”

pre and postconditions? (also not in informal spec?)

Preconditions:
● ATM card slot is free
● Card is valid
● (card is non null)

Postconditions:
● The ATM card slot is occupied
● Insertedcard = card
● (The user is not authenticated.)
● ((wrongPINCounter is 0)

Refresher: Logic
Want to express specification this completely formal, such that computer can
enforce it, which language? Logic!

A small refresher/intro now on:

● Propositional logic
● SAT Solving
● SMT Solving
● Predicate logic

Propositional logic
A propositional logic formula is built from:

● (boolean) variables p,q,r ...
● connectives:

Connective Means Dafny syntax

¬p not p !p

p ⋎ q p or q p || q

p ⋏ q p and q p && q

p ⇒ q if p then q p ==> q

p ⇔ q if p then q and vice versa p <==> q

Propositional logic: Truth tables
Given a propositional formula, we can construct a truth table:

p q p ⋎ q q ⇒ p (p ⋎ q) ⋏ (q ⇒ p)

F F F T F

F T T F F

T F T T T

T T T T T

A propositional formula is...
● a tautology if the rightmost column is T for each row
● satisfiable if there is at least one row where the rightmost collumn is T

Kahoot!

Some tautologies

● ¬¬x ↔ x
● ¬(φ ∧ ψ) ↔ ¬φ ∨ ¬ψ
● ¬(φ ∨ ψ) ↔ ¬φ ∧ ¬ψ
● false → φ
● (φ → ψ) ↔ (¬φ ∨ ψ)

Propositional Satisfiability Problem(SAT) Solver

SAT
Solver

Propositional
formula
eg.
(p ⋎ q) ⋏ (q ⇒ p)
p ⋏ (q ⇒ ¬q) ⋏ ¬p

Yes! p = T, q = F,

No

Program that solves wether formula is satisfiable

Can also be used to check if formula P is a tautology:
Check that ¬P is not satisfiableNP complete-problem, but over last +- 15 years SAT solver have become very fast for many inputs!

Predicate logic + theory of linear inequalities
Predicate logic is not very expressive....

Let’s add:

● Variables of type Real
● Constants 0,0.1, 1,2,3,4,....
● Operations +, *, -, ≤, ≥, =

Example formulae:
x + 2 * y ≤ z ⋏ z ≥ x + 20
x + y ≥ z ⋏ x = z + 1

Satisfiable?

Yes: x = 0, y = 0, z = 30

Yes: x = 1, y = 6000, z = 0
Kahoot!

Satisfiablity modulo theories

SMT
Solver

Propositional
formula + linear
inequalities
eg.
x + 2 * y ≤ z ⋏ z ≥ x
+ 20

Yes! p = T, x = 1,
 q = F, y =0.2

No

Program that solves wether formula is satisfiable

NP complete-problem, but over last +- 15 years SMT solver have become very fast for many inputs!

Theories

linear inequalities is an example of a theory, an
extension of predicate logic

Other (decicable) theories supported by SMT
solvers:
● Arrays
● Bitvectors
● Uninterpreted functions

First order logic
Take Predicate logic + theories and add quantifiers:

Quantifier Meaning Dafny

∀ x : t, P Forall x of type t, P holds forall x : t :: P

∃ x : t, P There exists at least one x of
type t, such that P holds

exists x : t :: P

Example

All elements in array a are bigger than zero ∀ i : int, 0 ≤ i < a.length ⇒ a[i] > 0

There is an element which is even in array a ∃ i : int, 0 ≤ i < a.length ⋏ isEven(a[i])

Satisfiablity modulo theories + Quantifiers

SMT Solver
+ quantifiers

First order forumula

Yes!

I don’t know

Semidecidable problem, but often gives good results

Valid formulas

A first order logic formula is valid if it is true in every interpretation (however we
interpret the functions and constants)

Examples:

● ¬(∃ x : t. ¬φ) ↔ ∀ x : t. φ
● (∀ x : t. φ ∧ ψ) ↔ (∀ x : t. φ) ∧ (∀ x : t. ψ)
● (∃ x : t. φ ∨ ψ) ↔ (∃ x : t φ) ∨ (∃ x : t. ψ)

Non-examples:

● ∀ x : int, x + 0 = x
● (∀ x : t. φ ∨ ψ) ↔ (∀ x : t. φ) ∨ (∀ x : t. ψ)
● (∃ x : t. φ ∧ ψ) ↔ (∃ x : t φ) ∧ (∃ x : t. ψ)

Formula must hold for every interpretation of +,
does not have to be regular +, can also be for example:
a + b = 2

Kahoot!

Formal specification examples
int[] sort(int[] a)

Requires: a ≠ null
Ensures: isSorted(sort(a)) ∧ isPermutationOf(sort(a),a)

int binarySearch(int[] a,int elem)

Requires: a ≠ null ∧ isSorted(a)
Ensures: (result = -1 ∧ ∀ i : int, 0 ≤ i < a.length ⇒ a[i] ≠ elem) ⋎
 (a[result] = elem ∧ ∀ i : int, 0 ≤ i < result ⇒ a[i] ≠ elem)

More examples:

int maximum(int[] a)

Requires: a ≠ null /\ a is non-empty
Ensures: geqAll(a, result) ⋏ exists i : int, a[i] = result
geqAll(int[] a, int elem) = ∀ i : int, 0 ≤ i < a.length ⇒ a[i] ≤ elem

Let’s try

Conclusion & Next times
Today we say:

● Formal specification: what and why
● A first glancy at Dafny
● Intro/Refresher on logic

This Wednesday:

Stateful property based testing + guest lecture John Hughes

Next week:

More formal specification & Dafny!

