

Test Data Generators

Why Distinguish Instructions?

• Functions always give the same result for
the same arguments

• Instructions can behave differently on
different occasions

• Confusing them (as in most programming
languages) is a major source of bugs
– This concept a major breakthrough in

programming languages in the 1990s

– How would you write doTwice in C?

Monads = Instructions

• What is the type of doTwice?

Main> :i doTwice
doTwice :: Monad m => m a -> m (a,a)

Whatever kind of
result argument

produces, we get
a pair of them

Even the kind of
instructions can vary!

Different kinds of
instructions, depending

on who obeys them.
IO means instructions to
the operating system

Instructions for Test Data
Generation

• Generate different test data every time
– Hence need “instructions to generate an a”

– Instructions to QuickCheck, not the OS

– Gen a IO a

• Generating data of different types?

QuickCheck> :i Arbitrary
-- type class
class Arbitrary a where
 arbitrary :: Gen a

Sampling

• Use sample to print some sampled values:
sample :: Gen a -> IO ()

• Example:

Sample> sample (arbitrary :: Gen Integer)
1
0
-5
14
-3

Fix the
type we
generate

Prints (fairly small) test
data that QuickCheck

might generate

Sampling Booleans

Sample> sample (arbitrary :: Gen Bool)

True

False

True

True

True

Sampling Doubles

Sample> sample (arbitrary :: Gen Double)

-5.75

-1.75

2.16666666666667

1.0

-9.25

Sampling Lists

Sample> sample (arbitrary :: Gen [Integer])

[-15,-12,7,-13,6,-6,-2,4]

[3,-2,0,-2,1]

[]

[-11,14,2,8,-10,-8,-7,-12,-13,14,15,15,11,7]

[-4,10,18,8,14]

Writing Generators

• Write instructions using do and return:
Sample> sample (return True)

True

True

True

True

True

Writing Generators

• Write instructions using do and return:
Main> sample (doTwice (arbitrary :: Gen Integer))

(12,-6)

(5,5)

(-1,-9)

(4,2)

(13,-6)

It’s important that the
instructions are followed
twice, to generate two

different values.

Writing Generators

• Write instructions using do and return:
Main> sample evenInteger

-32

-6

0

4

0

evenInteger :: Gen Integer
evenInteger =
 do n <- arbitrary
 return (2*n)

Generation Library

• QuickCheck provides many functions for
constructing generators
Main> sample (choose (1,10) :: Gen Integer)

6

7

10

6

10

choose :: Random a => (a,a) -> Gen a

Generation Library

• QuickCheck provides many functions for
constructing generators
Main> sample (oneof [return 1, return 10])

1

1

10

1

1

oneof :: [Gen a] -> Gen a

Generating a Suit

Main> sample suit
Spades
Hearts
Diamonds
Diamonds
Clubs

data Suit = Spades | Hearts | Diamonds | Clubs
 deriving (Show,Eq)

suit :: Gen Suit
suit = oneof [return Spades,

 return Hearts,
 return Diamonds,
 return Clubs]

QuickCheck chooses one set
of instructions from the list

Generating a Rank

Main> sample rank
Numeric 4
Numeric 5
Numeric 3
Queen
King

data Rank = Numeric Integer
 | Jack | Queen | King | Ace
 deriving (Show,Eq)

rank = oneof
 [return Jack,

 return Queen,
 return King,

 return Ace,
 do r <- choose (2,10)

 return (Numeric r)]

Generating a Card

Main> sample card
Card Ace Hearts
Card King Diamonds
Card Queen Clubs
Card Ace Hearts
Card Queen Clubs

data Card = Card Rank Suit
 deriving (Show,Eq)

card =
 do r <- rank

s <- suit
return (Card r s)

Generating a Hand

Main> sample hand
Some (Card Jack Clubs) (Some (Card Jack Hearts) Empty)
Empty
Some (Card Queen Diamonds) Empty
Empty
Empty

data Hand = Empty | Some Card Hand
 deriving (Eq, Show)

hand = oneof
 [return Empty,
 do c <- card

 h <- hand
 return (Some c h)]

Making QuickCheck Use Our
Generators

QuickCheck can generate values of any type in the
class Arbitrary:

Main> :i Arbitrary
-- type class
class Arbitrary a where
 arbitrary :: Gen a

-- instances:
instance Arbitrary ()
instance Arbitrary Bool
instance Arbitrary Int
…

Tells QuickCheck how
to generate values of a

given type

Making QuickCheck Use Our
Generators

• QuickCheck can generate values of any type in
the class Arbitrary

• So we have to make our types instances of this
class

instance Arbitrary Suit where
 arbitrary = suit

Make a
new

instance

…of this class… …for this type…

…where this method… …is defined like this.

Datatype Invariants

• We design types to model our problem – but
rarely perfectly
– Numeric (-3) ??

• Only certain values are valid

• This is called the datatype invariant – should
always be True

validRank :: Rank -> Bool
validRank (Numeric r) = 2<=r && r<=10
validRank _ = True

Testing Datatype Invariants

• Generators should only produce values
satisfying the datatype invariant:

• Stating the datatype invariant helps us
understand the program, avoid bugs

• Testing it helps uncover errors in test data
generators!

prop_rank r = validRank r

Testing code needs testing too!

Test Data Distribution

• We don’t see the test cases when
quickCheck succeeds

• Important to know what kind of test data is
being used

prop_rank r = collect r (validRank r)

This property means the same as
validRank r, but when tested,

collects the values of r

Distribution of Ranks

Main> quickCheck prop_rank
OK, passed 100 tests.
26% King.
25% Queen.
19% Jack.
17% Ace.
7% Numeric 9.
2% Numeric 7.
1% Numeric 8.
1% Numeric 6.
1% Numeric 5.
1% Numeric 2.

We see a summary,
showing how often
each value occured

Face cards occur
much more frequently
than numeric cards!

Fixing the Generator

rank = frequency
 [(1,return Jack),
 (1,return Queen),
 (1,return King),
 (1,return Ace),
 (9, do r <- choose (2,10)

 return (Numeric r))]

Each alternative is
paired with a
weight
determining how
often it is chosen.

Choose number
cards 9x as often.

frequency :: [(Int, Gen a)] -> Gen a

Distribution of Hands

• Collecting each hand generated produces
too much data – hard to understand

• Collect a summary instead – say the
number of cards in a hand

size :: Hand -> Integer
size Empty = 0
size (Some _ h) = 1 + size h

Distribution of Hands

Main> quickCheck prop_hand
OK, passed 100 tests.
53% 0.
25% 1.
9% 2.
5% 3.
4% 4.
2% 9.
2% 5.

prop_hand h = collect (size h) True

Nearly 80% have no more
than one card!

Fixing the Generator

Returning Empty
20% of the time
gives average
hands of 5 cards

hand = frequency [(1,return Empty),
 (4, do c <- card

 h <- hand
 return (Some c h))]

Main> quickCheck prop_hand
OK, passed 100 tests.
22% 0.
13% 2.
13% 1.
12% 5.
12% 3.
6% 4.
4% 9.
4% 8.
…

Testing Algorithms

See Insert.hs on the course web page

Testing insert

• insert x xs – inserts x at the right place in
an ordered list
Main> insert 3 [1..5]

[1,2,3,3,4,5]

• The result should always be ordered

prop_insert :: Integer -> [Integer] -> Bool
prop_insert x xs = ordered (insert x xs)

Testing insert

*Main> quickCheck prop_insert

*** Failed! Falsifiable (after 4 tests and 2 shrinks):

0

[1,0]
Of course, the result won’t be

ordered unless the input is

Minimal failing test case
(QuickCheck performs ”shrinking”)

Testing insert

prop_insert :: Integer -> [Integer] -> Property
prop_insert x xs =

ordered xs ==> ordered (insert x xs)

Testing succeeds, but…

• New attempt:

Testing insert

• Let’s observe the test data…

prop_insert :: Integer -> [Integer] -> Property
prop_insert x xs =

collect (length xs)
(ordered xs ==> ordered (insert x xs))

*Main> quickCheck prop_insert2
*** Gave up! Passed only 68 tests:
44% 0
36% 1
11% 3
 7% 2

Why so short???

Application operator: $

collect (length xs) (ordered xs ==> ordered (insert x xs))

The $ operator can be inserted between a function and its last
argument.

Same expression:

Advantage: parentheses around argument not needed

collect (length xs) $ (ordered xs ==> ordered (insert x xs))

collect (length xs) $ ordered xs ==> ordered (insert x xs)

Testing insert

• Let’s observe the test data…

prop_insert :: Integer -> [Integer] -> Property
prop_insert x xs =

collect (length xs) $
ordered xs ==> ordered (insert x xs)

*Main> quickCheck prop_insert2
*** Gave up! Passed only 68 tests:
44% 0
36% 1
11% 3
 7% 2

Why so short???

What’s the Probability a Random
List is Ordered?

Length Ordered?

0

1

2

3

4

100%

100%

50%

17%

4%

Generating Ordered Lists

• Generating random lists and choosing
ordered ones is silly

• Better to generate ordered lists to begin
with – but how?

• One idea:
– Generate an arbitrary list
– sort it

The Ordered List Generator

orderedList :: Gen [Integer]
orderedList =
 do xs <- arbitrary
 return (sort xs)

Trying it

Main> sample orderedList

[]

[-4,-1,3]

[-5,-4,-3,1,2]

[-6,0,4,7]

[-10,-9,-9,-7,1,2,2,8,10,10]

Making QuickCheck use a Custom
Generator

• Can’t redefine arbitrary: the type doesn’t
say we should use orderedList

• Make a new type

data OrderedList = Ordered [Integer]

A new type with
an invariant:

ordered elements

(already defined in
QuickCheck)

Making QuickCheck use a Custom
Generator

• Make a new type

• Make an instance of Arbitrary

data OrderedList = Ordered [Integer]

instance Arbitrary OrderedList where
 arbitrary =
 do xs <- orderedList
 return (Ordered xs)

Testing insert Correctly

prop_insert :: Integer -> OrderedList -> Bool
prop_insert x (Ordered xs) =
 ordered (insert x xs)

Main> quickCheck prop_insert
OK, passed 100 tests.

Collecting Data

prop_insert x (Ordered xs) =
 collect (length xs) $
 ordered (insert x xs)

Main> quickCheck prop_insert
OK, passed 100 tests.
17% 1.
16% 0.
12% 3.
12% 2….

Wide variety of
lengths

Reading

• About IO and do notation: Chapter 9 of
Learn You a Haskell

• About QuickCheck: read the manual
linked from the course web page.
– There are also several research papers about

QuickCheck, and advanced tutorial articles.

http://learnyouahaskell.com/input-and-output

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42
	Sida 43

