

Based on material by Koen Lindström Claessen

Introduction to Functional
Programming

Course Summary and Future

The End of the Course

• Next week: Exam
– Example exams + answers on the web

– No computers

– In English: Bring an English dictionary
• answers may be in swedish

– A list of standard Haskell functions

What If ...

• You are not done with the labs in time?
– Next year: this course runs again

– Possibly changed labs

• You do not pass the exam?
– January: re-exam
– August: re-exam
– Next year: this course runs again

What Have We Learned?

• Programming
– For some of you: first time
– Make the computer do some useful tasks

• Programming Language
– Haskell
– Different from what most of you had seen

before

• Programming Principles
– ...

Programming Principles (I)

• Modelling
– Create a new type that models what you are

dealing with

– Design and define typed functions around
your types

– Sometimes your type has an extra invariant

– Invariants should be documented (for
example as a property)

Programming Principles (II)

• Properties
– When you define functions around your

types...

– Think about and define properties of these
functions

– Properties can be tested automatically to find
mistakes

– Mistakes can be in your functions (program)
or in your properties (understanding)

Programming Principles (III)

• Breaking up problems into simpler parts,
recursion
– When you need to solve a large, complicated

problem...

– Continue breaking up until the parts are simple,
or until you can use an existing solution

– The parts can be solved recursively

– Solve the whole problem by combining the
solutions of all parts

Programming Principles (IV)

• Abstraction and Generalization
– When you find yourself repeating a

programming task

– Take a step back and see if you can
generalize

– You can often define an abstraction (higher-
order function) performing the old task and
the new one

– Avoid copy-and-paste programming

Programming Principles (V)

• Pure functions
– Use pure functions as much as possible

– These are easier to understand, specify and
test

– Concentrate IO instructions in a small part of
your program

Programming Principles (VI)

• Separation
– Divide up your program into small units

(functions)

– These should be grouped together into larger
units (modules)

– Minimize dependencies between these parts

– So that it is easy to make internal changes,
without affecting your whole program

Programming Principles

• Important!

• Independent of programming language

Report from the front

“Läste kursen 2010 när jag började på D och lärde
mig mycket, fast jag tyckte att jag kunde
programmera innan. Fick 2012 jobb på Ericsson och
programmerade då i Python, och använde då
dagligen tekniker som jag lärde mig i kursen,
framförallt då rekursion, operationer på listor och
delar av det funktionella programmeringssättet som
var nytt för mig 2010.”

Report from the front

“En vanlig fråga/missuppfattning som jag minns från
början av Chalmers är just 'varför Haskell? Ingen
använder det på riktigt i industrin', och det kan vara
värt att påminna en extra gång om att man lär sig
metoder och tankesätt som är användbara oavsett
vilket språk man sedan kodar i.”

Why Haskell?

• What is easy in Haskell:
– Defining types

– Properties and testing

– Recursion

– Abstraction, higher-order functions

– Pure functions

– Separation (laziness)

Why Haskell (II)?

• What is harder in Haskell:
– Ignoring types

• Static strong typing

• Expressive type system
– Most advanced type system in a real-world language

– Impure functions
• All functions are pure

– Unique among real-world languages

• Instructions are created and composed explicitly
– Makes it clear where the ”impure stuff” happens

Imperative programming:

• Instructions are used to change the computer's
state:
– x := x+1
– deleteFile(”slides.pdf”)

• Run the program by following the instructions top-
down

Functional programming:

• Functions are used to declare dependencies
between data values:
– y = f(x)

• Dependencies drive evaluation

Two major paradigms

Imperative programming:

• Instructions are used to change the computer's
state:
– x := x+1
– deleteFile(”slides.pdf”)

• Run the program by following the instructions top-
down

Functional programming:

• Functions are used to declare dependencies
between data values:
– y = f(x)

• Dependencies drive evaluation

Two major paradigms

Functional Programming

• Functions are used to declare dependencies
between data values:
– y = f(x)

• Functions are the basic building blocks of
programs

• Functions are used to compose functions into
larger functions

• In a (pure) function, the result depends only on
the argument (no external communication)

Functional Programming

• “Drives” development of new programming
languages
– Type systems
– Garbage collection
– Higher-order functions / Lambdas
– List comprehensions
– ...

• Haskell is the most advanced functional
programming language today

Learning a Programming Language

• Learn the new features, principles,
associated with the language

• Reuse things you know from other
languages

• Learn different languages
– what is popular now might not be popular in 5

years from now

• Use the right language for the right job
– Systems consist of several languages

Multi-core Revolution

• Traditional ways of programming do not
work – a challenge for the programming
language community

• Right now, industry is looking for
alternatives
– Intel

– Microsoft

– IBM

– ...

Alternatives?

• Expression-level parallelism
– Haskell

– Other functional languages

• Software Transactional Memory
– Haskell

• Message passing between processes
– Erlang

restriction:
control of

side effects

restriction:
no shared
memory

restriction:
no

side effects

This Course

• Introduction to programming

• Introduction to Haskell

• There is lots, lots more...

Coming Programming Courses

• Grundläggande
datorteknik
– Assembler

• Objektorienterad
programming
– Java

• Inbyggda system

– C
• Data structures

– Java
– Haskell

D-line GU

• Two programming
courses
– Both in Java

• Datastructures
– Java
– Haskell

Future Programming Courses

• Concurrent Programming
• Compiler Construction
• Advanced Functional Programming
• Parallel Functional Programming
• Software Engineering using Formal Methods
• Language Technology
• (Programming Paradigms)
• ...

All use
Functional

Programming in
some way

Course evaluation

• Please don't forget to fill in the course
evaluation!

• This will help us improve the course in
coming years

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26

