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The End of the Course

• Next week: Exam
– Example exams + answers on the web

– No computers

– In English: Bring an English dictionary
• answers may be in swedish

– A list of standard Haskell functions



  

What If ...

• You are not done with the labs in time?
– Next year: this course runs again

– Possibly changed labs

• You do not pass the exam?
– January: re-exam
– August: re-exam
– Next year: this course runs again



  

What Have We Learned?

• Programming
– For some of you: first time
– Make the computer do some useful tasks

• Programming Language
– Haskell
– Different from what most of you had seen 

before

• Programming Principles
– ...



  

Programming Principles (I)

• Modelling
– Create a new type that models what you are 

dealing with

– Design and define typed functions around 
your types

– Sometimes your type has an extra invariant

– Invariants should be documented (for 
example as a property)



  

Programming Principles (II)

• Properties
– When you define functions around your 

types...

– Think about and define properties of these 
functions

– Properties can be tested automatically to find 
mistakes

– Mistakes can be in your functions (program) 
or in your properties (understanding)



  

Programming Principles (III)

• Breaking up problems into simpler parts, 
recursion
– When you need to solve a large, complicated 

problem...

– Continue breaking up until the parts are simple, 
or until you can use an existing solution

– The parts can be solved recursively

– Solve the whole problem by combining the 
solutions of all parts



  

Programming Principles (IV)

• Abstraction and Generalization
– When you find yourself repeating a 

programming task

– Take a step back and see if you can 
generalize

– You can often define an abstraction (higher-
order function) performing the old task and 
the new one

– Avoid copy-and-paste programming



  

Programming Principles (V)

• Pure functions
– Use pure functions as much as possible

– These are easier to understand, specify and 
test

– Concentrate IO instructions in a small part of 
your program



  

Programming Principles (VI)

• Separation
– Divide up your program into small units 

(functions)

– These should be grouped together into larger 
units (modules)

– Minimize dependencies between these parts

– So that it is easy to make internal changes, 
without affecting your whole program



  

Programming Principles

• Important!

• Independent of programming language



  

Report from the front

“Läste kursen 2010 när jag började på D och lärde 
mig mycket, fast jag tyckte att jag kunde 
programmera innan. Fick 2012 jobb på Ericsson och 
programmerade då i Python, och använde då 
dagligen tekniker som jag lärde mig i kursen, 
framförallt då rekursion, operationer på listor och 
delar av det funktionella programmeringssättet som 
var nytt för mig 2010.”



  

Report from the front

“En vanlig fråga/missuppfattning som jag minns från 
början av Chalmers är just 'varför Haskell? Ingen 
använder det på riktigt i industrin', och det kan vara 
värt att påminna en extra gång om att man lär sig 
metoder och tankesätt som är användbara oavsett 
vilket språk man sedan kodar i.”



  

Why Haskell?

• What is easy in Haskell:
– Defining types

– Properties and testing

– Recursion

– Abstraction, higher-order functions

– Pure functions

– Separation (laziness)



  

Why Haskell (II)?

• What is harder in Haskell:
– Ignoring types

• Static strong typing

• Expressive type system
– Most advanced type system in a real-world language

– Impure functions
• All functions are pure

– Unique among real-world languages

• Instructions are created and composed explicitly
– Makes it clear where the ”impure stuff” happens



  

Imperative programming:

• Instructions are used to change the computer's 
state:
– x := x+1
– deleteFile(”slides.pdf”)

• Run the program by following the instructions top-
down

Functional programming:

• Functions are used to declare dependencies 
between data values:
– y = f(x)

• Dependencies drive evaluation

Two major paradigms
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Functional Programming

• Functions are used to declare dependencies 
between data values:
– y = f(x)

• Functions are the basic building blocks of 
programs

• Functions are used to compose functions into 
larger functions

• In a (pure) function, the result depends only on 
the argument (no external communication)



  

Functional Programming

• “Drives” development of new programming 
languages
– Type systems
– Garbage collection
– Higher-order functions / Lambdas
– List comprehensions
– ...

• Haskell is the most advanced functional 
programming language today



  

Learning a Programming Language

• Learn the new features, principles, 
associated with the language

• Reuse things you know from other 
languages

• Learn different languages
– what is popular now might not be popular in 5 

years from now

• Use the right language for the right job
– Systems consist of several languages



  

Multi-core Revolution

• Traditional ways of programming do not 
work – a challenge for the programming 
language community

• Right now, industry is looking for 
alternatives
– Intel

– Microsoft

– IBM

– ...



  

Alternatives?

• Expression-level parallelism
– Haskell

– Other functional languages

• Software Transactional Memory
– Haskell

• Message passing between processes
– Erlang

restriction:
control of

side effects

restriction:
no shared
memory

restriction:
no

side effects



  

This Course

• Introduction to programming

• Introduction to Haskell

• There is lots, lots more...



  

Coming Programming Courses

• Grundläggande 
datorteknik
– Assembler

• Objektorienterad 
programming
– Java

• Inbyggda system

–  C
• Data structures

– Java
– Haskell 

D-line GU

• Two programming 
courses
– Both in Java

• Datastructures
– Java
– Haskell



  

Future Programming Courses

• Concurrent Programming
• Compiler Construction
• Advanced Functional Programming
• Parallel Functional Programming
• Software Engineering using Formal Methods
• Language Technology
• (Programming Paradigms)
• ...

All use 
Functional 

Programming in 
some way



  

Course evaluation

• Please don't forget to fill in the course 
evaluation!

• This will help us improve the course in 
coming years
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