

Recursive Data Types

Original slides by Koen Lindström Claessen

Modelling Arithmetic
Expressions

Imagine a program to help school-children learn arithmetic,
which presents them with an expression to work out, and
checks their answer.

What is (1+2)*3? 8
Sorry, wrong answer!

Modelling Arithmetic
Expressions

The expression (1+2)*3 is data as far as this program is
concerned (not the same as 9!). How shall we represent it?

A string??
What is ”1+2”++”3”?

What is ”1+hello world**”?

Modelling Expressions

Let’s design a datatype to model arithmetic expressions -- not
their values, but their structure.

An expression can be:

•a number n

•an addition a+b

•a multiplication a*b

data Expr =

 Num

 | Add

 | Mul

What information
should we store

in each alternative?

Modelling Expressions

Let’s design a datatype to model arithmetic expressions -- not
their values, but their structure.

An expression can be:

•a number n

•an addition a+b

•a multiplication a*b

data Expr =

 Num Integer

 | Add Expr Expr

 | Mul Expr Expr

A recursive data type !!

Examples

data Expr = Num Integer

 | Add Expr Expr

 | Mul Expr Expr

The expression: is represented by:

2 Num 2

2+2 Add (Num 2) (Num 2)

(1+2)*3 Mul (Add (Num 1) (Num 2)) (Num 3)

1+2*3 Add (Num 1) (Mul (Num 2) (Num 3))

A Difference

• There is a difference between
– 17 :: Integer

– Num 17 :: Expr

• Why are these different?
– Can do different things with them

– Some things only work for one of them

– So, their types should be different

Similar to the
distinction between

Int and IO Int
(value vs. instructions)

Quiz

Can you define a function

eval :: Expr -> Integer

which evaluates an expression?

Example: eval (Add (Num 1) (Mul (Num 2) (Num 3)))

7

Hint: Recursive types often mean recursive functions!

Quiz

Can you define a function

eval :: Expr -> Integer

which evaluates an expression?

eval (Num n) =

eval (Add a b) =

eval (Mul a b) =

Use pattern matching: one equation for each case.

a and b are of
type Expr.

What can we put
here?

Quiz

Can you define a function

eval :: Expr -> Integer

which evaluates an expression?

eval (Num n) = n

eval (Add a b) = eval a + eval b

eval (Mul a b) = eval a * eval b

Recursive types mean
recursive functions!

Showing Expressions

Expressions will be more readable if we convert them to strings.

showExpr (Mul (Num 1) (Add (Num 2) (Num 3)))

”1*2+3”

showExpr :: Expr -> String

showExpr (Num n) = show n

showExpr (Add a b) = showExpr a ++ ”+” ++ showExpr b

showExpr (Mul a b) = showExpr a ++ ”*” ++ showExpr b

Quiz

Which brackets are necessary? 1+(2+3)

1+(2*3)

1*(2+3)

What kind of expression may need to be bracketed?

When does it need to be bracketed?

Quiz

Which brackets are necessary? 1+(2+3)

1+(2*3)

1*(2+3)

What kind of expression may need to be bracketed?

When does it need to be bracketed?

NO!

YES!

NO!

Additions

Inside multiplications.

Idea

Format factors differently:

showExpr :: Expr -> String
showExpr (Num n) = show n
showExpr (Add a b) = showExpr a ++ "+" ++ showExpr b
showExpr (Mul a b) = showFactor a ++ "*" ++ showFactor b

showFactor :: Expr -> String
?
showFactor :: Expr -> String
showFactor (Add a b) = "("++showExpr (Add a b)++")"
showFactor e = showExpr e

Making a Show instance

instance Show Expr where

show = showExpr

data Expr = Num Integer | Add Expr Expr | Mul Expr Expr
 deriving (Show, Eq)

(Almost) Complete Program

questions :: IO ()

questions = do

 e <- generate arbitrary

 putStr ("What is " ++ show e ++ "? ")

 ans <- getLine

 putStrLn (if read ans == eval e

 then "Right!" else "Wrong!")

 questions
Opposite of show

An expression
generator—needs

to be written

Run a QuickCheck
generator as IO

instructions

generate function

• QuickCheck >2.7 includes the function generate
used on the previous slide

• Chalmers' student computers are (by default)
equipped with QuickCheck 2.5

• How to define generate in 2.5:

import System.Random
import Test.QuickCheck.Gen

generate :: Gen a -> IO a
generate g = do
 seed <- newStdGen
 return (unGen g seed 10)

Generating Arbitrary Expressions

 instance Arbitrary Expr where
 arbitrary = arbExpr

 arbExpr :: Gen Expr
 arbExpr =
 oneof [do n <- arbitrary
 return (Num n)
 , do a <- arbExpr
 b <- arbExpr
 return (Add a b)
 , do a <- arbExpr
 b <- arbExpr
 return (Mul a b)]

Does not
work! (why?)

Generates
infinite

expressions!

Generating Arbitrary Expressions
 instance Arbitrary Expr where

 arbitrary = sized arbExpr

 arbExpr :: Int -> Gen Expr
 arbExpr s =
 frequency [(1, do n <- arbitrary
 return (Num n))
 , (s, do a <- arbExpr s’
 b <- arbExpr s’
 return (Add a b))
 , (s, do a <- arbExpr s’
 b <- arbExpr s’
 return (Mul a b))]

 where
 s’ = s `div` 2

Size argument
changes at each

recursive call

Demo

Main> questions
What is -3*4*-1*-3*-1*-1? -36
Right!
What is 15*4*(-2+-13+-14+13)? -640
Wrong!
What is 0? 0
Right!
What is (-4+13)*-9*13+7+15+12? dunno

Program error: Prelude.read: no parse

The Program

putStrLn (if read ans==eval e

 then "Right!" else "Wrong!")

failing

cannot fail

putStrLn (if ans==show (eval e)

 then "Right!" else "Wrong!")

Reading Expressions

• How about a function
– readExpr :: String -> Expr

• Such that
– readExpr “12+173” =

• Add (Num 12) (Num 173)

– readExpr “12+3*4” =
• Add (Num 12) (Mul (Num 3) (Num 4))

We see how to
implement this

in the next
lecture

Symbolic Expressions

• How about expressions with variables in
them?

data Expr = Num Integer

 | Add Expr Expr

 | Mul Expr Expr

 | Var Name

 type Name = String

Add Var and
change functions

accordingly

Gathering Variables

It is often handy to know exactly which variables occur in a
given expression

 vars :: Expr -> [Name]

 vars = ?

Gathering Variables

It is often handy to know exactly which variables occur in a
given expression

 vars :: Expr -> [Name]

 vars (Num n) = []

 vars (Add a b) = vars a `union` vars b

 vars (Mul a b) = vars a `union` vars b

 vars (Var x) = [x]
From Data.List;
combines two
lists without
duplication

Evaluating Expressions

We would like to evaluate expressions with variables. What is the
type?

 eval :: Expr -> ? eval :: [(Name,Integer)] -> Expr -> Int

Table of values
for variables

 eval :: [(Name,Integer)] -> Expr -> Integer

 eval env (Num n) = n

 eval env (Var y) = fromJust (lookup y env)

 eval env (Add a b) = eval env a + eval env b

 eval env (Mul a b) = eval env a * eval env b

Symbolic Differentiation

Differentiating an expression produces a new expression. We
implement it as:

 diff :: Expr -> Name -> Expr

 diff (Num n) x = Num 0

 diff (Var y) x | x==y = Num 1

 | x/=y = Num 0

 diff (Add a b) x = Add (diff a x) (diff b x)

 diff (Mul a b) x = Add (Mul a (diff b x)) (Mul b (diff a x))

Variable to
differentiate wrt.

Testing differentiate

Main> diff (Mul (Num 2) (Var “x”)) “x”
2*1+0*x

Not quite what we expected!
-- not simplified

What happens?

d (2*x) = 2
dx

differentiate (Mul (Num 2) (Var ”x”)) ”x”

Add (Mul (Num 2) (differentiate (Var ”x”) ”x”))

 (Mul (Var ”x”) (differentiate (Num 2) ”x”))

Add (Mul (Num 2) (Num 1))

 (Mul (Var ”x”) (Num 0))
2*1 + x*0

How can we make differentiate simplify the result?

“Smart” Constructors

• Define

add :: Expr -> Expr -> Expr
add (Num 0) b = b
add a (Num 0) = a
add (Num x) (Num y) = Num (x+y)
add a b = Add a b

By using add instead of Add,
certain simplifications are

performed when constructing
the expression!

more
simplification
is possible…

Testing add

Main> Add (Num 2) (Num 5)
2+5
Main> add (Num 2) (Num 5)
7

Symbolic Differentiation

Differentiating an expression produces a new expression. We
implement it as:

 diff :: Expr -> Name -> Expr

 diff (Num n) x = Num 0

 diff (Var y) x | x==y = Num 1

 | x/=y = Num 0

 diff (Add a b) x = add (diff a x) (diff b x)

 diff (Mul a b) x = add (mul a (diff b x)) (mul b (diff a x))

note note note

“Smart” Constructors -- mul

• How to define mul?

mul :: Expr -> Expr -> Expr
mul (Num 0) b = Num 0
mul a (Num 0) = Num 0
mul (Num 1) b = b
mul a (Num 1) = a
mul (Num x) (Num y) = Num (x*y)
mul a b = Mul a b

Expressions

• Expr as a datatype can represent
expressions
– Unsimplified

– Simplified

– Results

– Data presented to the user

• Need to be able to convert between these

An Expression Simplifier

• Simplification function
– simplify :: Expr -> Expr

simplify :: Expr -> Expr
simplify e | null (vars e) = ?
…

You continue at the group
exercises!

Testing the Simplifier
 arbExpr :: Int -> Gen Expr

 arbExpr s =
 frequency [(1, do n <- arbitrary
 return (Num n))
 , (s, do a <- arbExpr s’
 b <- arbExpr s’
 return (Add a b))
 , (s, do a <- arbExpr s’
 b <- arbExpr s’
 return (Mul a b))

 , (1, do x <- elements [”x”,”y”,”z”]
 return (Var x))]
 where
 s’ = s `div` 2

Testing an Expression Simplifier

• (1) Simplification should not change the
value

prop_SimplifyCorrect e env =
 eval env e == eval env (simplify e)

prop_SimplifyCorrect e (Env env) =
 eval env e == eval env (simplify e)

Generate lists of
values for variables

Testing an Expression Simplifier

data Env = Env [(Name,Integer)]
 deriving (Eq, Show)

instance Arbitrary Env where
 arbitrary =
 do a <- arbitrary
 b <- arbitrary
 c <- arbitrary
 return (Env [(”x”,a),(”y”,b),(”z”,c)])

Testing an Expression Simplifier

• (2) Simplification should do a good job

prop_SimplifyNoJunk e =
 noJunk (simplify e)
 where
 noJunk (Add a b) = not (isNum a && isNum b)
 && noJunk a && noJunk b
 ...

You continue at the group
exercises!

Forthcoming Group Exercise

• Build and test an expression simplifier!

• I found many subtle bugs in my own
simplifier!
– Often simplifier goes into an infinite loop

Summary

• Recursive data-types can take many forms
other than lists

• Recursive data-types can model languages
(expressions, natural languages,
programming languages)

• Functions working with recursive types are
often recursive themselves

• When generating random elements in
recursive datatypes, think about the size

Next Time

• How to write parsers
– readExpr :: String -> Expr

• Case study: example of other recursive
datatype
– a simple game: ”the zoo”

– guessing animals using yes/no questions

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42

