

Laziness and Parallelism

Based on slides by Koen Claessen

A Function

fun :: Maybe Int -> Int
fun mx | mx == Nothing = 0
 | otherwise = x + 3
 where
 x = fromJust mx

Could fail… What
happens?

Another Function

slow :: Integer -> Integer
slow n | n <= 1 = 1
 | otherwise = slow (n-1) + slow (n-2)

Main> if' False 17 (slow 99)
17

if' :: Bool -> a -> a -> a
if' False x y = x
if' True x y = y

Printed
immediately!

Laziness

Haskell is a lazy language
– Things are evaluated at most once

– Things are only evaluated when they are
needed

– Things are never evaluated twice

Understanding Laziness

Use error or undefined to see whether
something is evaluated or not
– if' False 17 undefined

– head [3,undefined,17]

– head (3:4:undefined)

– head [undefined,17,13]

– head undefined

Lazy Programming Style

• Separate
– Where the computation of a value is defined

– Where the computation of a value happens

Modularity!

Lazy Programming Style

• head [1..1000000]

• zip ”abc” [1..9999]

• take 10 [’a’..’z’]

• …

When is a Value ”Needed”?

strange :: Bool -> Integer
strange False = 17
strange True = 17

Main> strange undefined
Exception: undefined

• An argument is evaluated when it is examined by pattern
matching (and the result of match is needed)
– Is the result of strange needed?

– Yes, because GHCi wants to print it

• Primitive functions (e.g. (+), div, etc.) evaluate their
arguments (if their result is needed)

And?

(&&) :: Bool -> Bool -> Bool
True && True = True
False && True = False
True && False = False
False && False = False

Is this a good
definition?

No – evaluates
more than
necessary

And and Or

(&&) :: Bool -> Bool -> Bool
True && x = x
False && x = False

Main> 1+1 == 3 && slow 99 == slow 99

False

(||) :: Bool -> Bool -> Bool
True || x = True
False || x = x

Main> 2*2 == 4 || undefined

True

Laziness

Haskell is a lazy language
– Things are evaluated at most once

– Things are only evaluated when they are
needed

– Things are never evaluated twice

“Things” ≈ variables and constants

At Most Once?

apa :: Integer -> Integer
apa x = f x + f x

bepa :: Integer -> Integer -> Integer
bepa x y = f 17 + x + y

Main> bepa 1 2 + bepa 3 4
310

f 17 is
evaluated

twice

f x is
evaluated

twice

Quiz: How to
avoid

recomputation?

At Most Once!

apa :: Integer -> Integer
apa x = fx + fx
 where
 fx = f x

Example: BouncingBalls

type Ball = [Point]

bounce :: Point -> Int -> Ball
bounce (x,y) v
 | v == 0 && y >= maxY = replicate 20 (x,y)
 | y' > maxY = bounce (x,y) (2-v)
 | otherwise = (x,y) : bounce (x,y') (v+1)
 where
 y' = y + fromIntegral v

Ball represented by
all the points in its

life time

Good idea?

Computing a ball
might take long...

Thanks to laziness, each new
position is computed exactly when

it is needed by the animation.

Example: Sudoku

solve :: Sudoku -> Maybe Sudoku
solve s | ... = Nothing
 | ... = Just s
 | otherwise = pickASolution possibleSolutions
 where
 nineUpdatedSuds = ... :: [Sudoku]
 possibleSolutions = [solve s' |
 s' <- nineUpdatedSuds]

pickASolution is lazy –
stops searching when
first solution is found

Infinite Lists

• Because of laziness, values in Haskell can
be infinite

• Impossible to compute them completely!

• Instead, only use parts of them

ones :: [Integer]
ones = 1 : ones

Main> take 10 ones
[1,1,1,1,1,1,1,1,1,1]

Recursion without
base case

Examples

Uses of infinite lists
– take n [3..]

– xs `zip` [1..]

Syntax for infinite
enumerations

Example: PrintTable

printTable :: [String] -> IO ()
printTable xs =
 sequence_ [putStrLn (show i ++ ": " ++ x)
 | (x,i) <- xs `zip` [1..]
]

Main> printTable ["Häst", "Får", "Snigel"]
1: Häst
2: Får
3: Snigel

lengths adapt
to each other

Iterate

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)
 -- iterate f x = [x, f x, f (f x), f (f (f x)), ...]

Main> iterate (*2) 1
[1,2,4,8,16,32,64,128,256,512,1024,...

Other Handy Functions

repeat :: a -> [a]
repeat x = x : repeat x

cycle :: [a] -> [a]
cycle xs = xs ++ cycle xs

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)
 -- iterate f x = [x, f x, f (f x), f (f (f x)), ...]

Quiz: How to
define these
with iterate?

Alternative Definitions

repeat :: a -> [a]
repeat x = iterate id x

cycle :: [a] -> [a]
cycle xs = concat (repeat xs)

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)
 -- iterate f x = [x, f x, f (f x), f (f (f x)), ...]

Problem: Replicate

replicate :: Int -> a -> [a]
replicate = ?

Main> replicate 5 ’a’
”aaaaa”

Problem: Replicate

replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

Problem: Grouping List Elements

group :: Int -> [a] -> [[a]]
group = ?

Main> group 3 ”apabepacepa!”
[”apa”,”bep”,”ace”,”pa!”]

Problem: Grouping List Elements

group :: Int -> [a] -> [[a]]
group n = takeWhile (not . null)
 . map (take n)
 . iterate (drop n)

takeWhile :: (a > Bool) > [a] > [a]

Problem: Prime Numbers

primes :: [Integer]
primes = ?

Main> take 4 primes
[2,3,5,7]

Problem: Prime Numbers

primes :: [Integer]
primes = 2 : [x | x <- [3,5..], isPrime x]
 where
 isPrime x =
 all (not . (`divides` x))
 (takeWhile (\y -> y*y <= x) primes)

all :: (a > Bool) > [a] > Bool

Infinite animations

Remove friction in Bouncing Balls:

– Ball never stops

– New points produced whenever the animation
function needs them

bounce :: Point -> Int -> Ball
bounce (x,y) v
 | v == 0 && y >= maxY = replicate 20 (x,y)
 | y' > maxY = bounce (w,h) (x,y) (0-v)
 | otherwise = (x,y) : bounce (x,y') (v+1)
 where
 y' = y + fromIntegral v

!

Laziness: Summing Up

• Laziness
– Evaluated at most once

– Programming style

• Do not have to use it
– But powerful tool!

• Can make programs more “modular”
– E.g. separate bounce function from drawing in

Bouncing Balls

Side-Effects

• Writing to a file

• Reading from a file

• Creating a window

• Waiting for the user to
click a button

• ...

• Changing the value of
a variable

Pure functions
cannot / should not

do this

That's why we use
instructions

(a.k.a. monads)

Some Haskell History

• A primary design goal of Haskell was to be a lazy
functional programming language

• Lazy programs:
– Values computed on-demand

– Compiler choses the order

• Uncontrolled ordering does not mix with side effects!
– … so Haskell had to be a pure language

• See: A History of Haskell
(P Hudak, J Hughes, SP Jones, P Wadler – 2007)

http://www.cs.uu.nl/foswiki/pub/USCS/InterestingPapers/HistoryOfHaskell.pdf

Parallelism

Moore's “law”

Complexity of a processor
doubling every 2 years

More Moore

Clock speed no
longer grows
exponentially

Sequential code
does not get faster

Solution: multicore!

Processors Today and
Tomorrow

single
core

dual core

quadcore

Processors Today and
Tomorrow

How to program
these?

Adapteva 64 cores
(Architecture supports

up to 4096 cores)

Parallelism

• Previously, computation went one step at a
time

• Now, we can (and have to) do many things
at the same time, “in parallel”

• Side effects and parallelism do not mix well:
race conditions
– Think: Many people cooking in the same kitchen

Basic parallelism in Haskell

import Control.Parallel

pseq :: a -> b -> b par :: a -> b -> b

pseq x y:
“first evaluate x, then
produce y as a result” par x y:

“produce y as a result,
but also evaluate x

in parallel”

Safe, because x has
no side effects

Needed to control lazy
evaluation

On-demand evaluation not
suitable in a parallel setting

Parallelism in Haskell

parList :: [a] -> b -> b
parList [] y = y
parList (x:xs) y = x `par` (xs `parList` y)
 -- parList [a,b,c] y =
 -- a `par` b `par` c `par` y

-- Parallel version of map
pmap :: (a -> b) -> [a] -> [b]
pmap f xs = ys `parList` ys
 where
 ys = map f xs

(Remove all par to
understand the result)

Parallelism in Haskell

data Expr = Num Int
 | Add Expr Expr

peval :: Expr -> Int
peval (Num n) = n
peval (Add a b) = x `par` y `par` x+y
 where
 x = peval a
 y = peval b

Live demo on a 32-core
machine

Pure Functions...

• ...enable easier understanding
– only the arguments affect the result

• ...enable easier testing
– stimulate a function by providing arguments

• ...enable laziness
– powerful programming tool

• ...enable easy parallelism
– no head-aches because of side effects

(Remove all par to
understand the result)

Do’s and Don’ts

lista :: a -> [a]
lista x = [x,x,x,x,x,x,x,x,x]

lista :: a -> [a]
lista x = replicate 9 x

Repetitive code
– hard to see
what it does...

Do’s and Don’ts

siffra :: Integer -> String
siffra 1 = ”1”
siffra 2 = ”2”
siffra 3 = ”3”
siffra 4 = ”4”
siffra 5 = ”5”
siffra 7 = ”7”
siffra 8 = ”8”
siffra 9 = ”9”
siffra _ = ”###”

siffra :: Integer -> String
siffra x | 1 <= x && x <= 9 = show x
 | otherwise = ”###”

Repetitive code
– hard to see
what it does...

Is this really
what we want?

Do’s and Don’ts

findIndices :: [Integer] -> [Integer]
findIndices xs = [i | i <- [0..n], (xs !! i) > 0]
 where
 n = length xs-1

findIndices :: [Integer] -> [Integer]
findIndices xs = [i | (x,i) <- xs `zip` [0..], x > 0]

How much time
does this take?

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42
	Sida 43
	Sida 44
	Sida 45

