

Getting stuff done in Haste

A brief introduction to web development
with Haskell

Anton Ekblad
antonek@chalmers.se

What we'll do today
● Write a Pong clone with Haste

– See web development in action
– Use simple 2D graphics
– Practice asking questions

● Talk about research on Haste
– Practice asking even more questions

What is Haste?
● Two major parts:

– A Haskell compiler targeting JavaScript
– A set of Haskell web development libraries

● By your powers combined: a Haskell
dialect for the web!

Fun things to do with Haste
● 2D graphics with Canvas
● 3D graphics with WebGL
● More powerful GUI with jQuery, React, etc.
● Easy client/server programs
● Add a feature to the libraries or compiler

Web development basics
● Web pages are trees of elements
● Elements have:

– Properties
– Style attributes
– Children
– Event handlers

● HTML + CSS is the usual starting point

And now for something
completely different

Why Haste?
● Web development is the future
● ...but it is a JavaScript monoculture!
● What to do if JS doesn't fit your problem?

– Symbolic computations
– Concurrent programs
– Large, complex systems
– Domain-specific languages

Does anyone actually use this?
● Education

– FP intro course, this course
● Research tool

– Interest in using Haste for doing NLP, Agda, etc. in
the browser

– Enhancing security in web languages
● Industry

– In use at several small companies

How does it work?

Program slicing
● Webb apps traditionally built in layers

– Often different languages
– Hampers code reuse
– Error-prone communication

● Can we do away with that?

Interfacing with the outside world
● Traditionally, very low level

– C-level interop
– Restricted to primitive types (int, char, etc.)
– Unsuitable for high-level targets like JS

● Can we do away with that?

Information flow control
● Web apps use lots of third party code!

– jQuery, Google Analytics, Angular, etc.
– Pulled in from $DEITY knows where
– May leak user data to just about anywhere

● Can we do something about that?

Compiling to crazy architectures
● JS is very different from a traditional CPU

– High level features like closures and GC
– No pointers/raw memory access
– No arbitrary jumps

● How do we deal with that?

Read more
● http://haste-lang.org

– Video tutorials
– Documentation
– Useful libraries
– Publications
– Source code, mailing list, IRC channel

http://haste-lang.org/

