Introduction to Monads

Lecture 06A, 2015
David Sands

| ast time we saw

A library for building parsers containing:
* An abstract data type Parser a
A function

parse ..

Parser a -> String -> Maybe(a,String)

« Basic building blocks for building parsers

We also saw

A specific parser (for Expr) built from scratch,
based on

type Parser a = String -> Maybe (a,String)

Recap of Parsing.hs

[See course home page for APl and source]
Parser implements the Monad type class

For now, that just means that we can use “do”
notation to build parsers, just like for |0 and Gen

do IO

s <- getlLine

C <- readFile s da

return $ s ++ C n <- elements[1..9]

m <- vectorOf n arbitrary

Gen

return $ n:m

do Parser
c <- sat (" elem *;,:”)

ds <- chain digit (char c)
return ds

1O t

Instructions for
interacting with
operating
system

Run by GHC
runtime system
produce value
of type t

Gen t

e Instructions for

building random
values

Run by
quickCheck to
generate
random values
of type t

Parser t

* |nstructions for
parsing

* Run by parse to
parse a string
and produce a
Maybe t

Year
1997
1999

1999

1996

Make
Ford
Chevy

Chevy

Jeep

Example, a CSV file

Model
E350
Venture "Extended Edition"

Venture "Extended Edition,
Very Large"

Grand Cherokee

Description

ac, abs, moon

MUST SELL!
air, moon roof,
loaded

Price
3000.00
4900.00

5000.00

4799.00

Example, a CSV file

The above table of data may be represented in CSV format as follows:

Year,Make,Model,Description,Price

1997 ,Ford,E350,"ac, abs, moon",3000.00

1999,Chevy, "Venture ""Extended Edition""","",4900.00
1999,Chevy, "Venture ""Extended Edition, Very
Large""",,5000.00

1996 ,Jeep,Grand Cherokee, "MUST SELL!

air, moon roof, loaded",4799.00

wikipedia

€ - C A [) www.cse.chalmers.se/edu/course/TDA452/FPLecture... @ 7| @ % 338 § QO LIe

Maintainer dave@chalmers.se

Pal‘Si ng Safe

data Parser a

Safe-Inferred

-3 parse :: Parser a -> String -> Maybe (a, String)
g' readsP :: Read a => Parser a
Docé failure :: Parser a
sat :: (Char -> Bool) -> Parser Char
data Pi jtem :: Parser Char
The : char :: Char -> Parser Char
digit :: Parser Char
E Insta (+++) :: Parser a -> Parser a -> Parser a
Mor (<:>) :: Parser a -> Parser [a] -> Parser [a]
Fur (>->) :: Parser a -> Parser b -> Parser b
Apr (<-<) :: Parser b -> Parser a -> Parser b
oneOrMore :: Parser a -> Parser [a]
zeroOrMore :: Parser a -> Parser [a]

parse
chain :: Parser a -> Parser b -> Parser [a]

Runs the parser on the given string to return maybe a thing and a

Example & Implementation

Terminology

* A “monadic value”is just an expression whose
type is an instance of class Monad

« ‘tis a monad” means tis an instance of the
class Monad

 We have often called a monadic value an
“Instruction”. This is not standard terminology
— but sometimes they are called “actions”

Monads

David Sands

Monads and do notation

* To be an instance of class Monad you need
(as a minimal definition) operations >>= and
return

class Monad m where
(>>=) ::ma ->(a->mb) ->mb

return :: a -> m a
Default implementations
(>>) ::ma->mb->mb

X >> Yy =X >=_ ->y

fail :: String -> m a
fail msg = error msg

Update, As of GHC 7.10

Monad is a subclass of Applicative (which is a
subclass of Functor)

The class itself is a bit simpler — you just need to
define >>=_ For the rest you can just write:
import Control.Applicative (Applicative(..))
import Control.Monad (1iftM, ap)
instance Functor MyMonad where fmap = 1iftM
instance Applicative MyMonad where
pure = -- move defn of return here
(<*>) = ap

Monad

* To be an instance of class Monad you need
two operations: >>= and return

instance Monad Parser where
return = succeed

(>>=) = (5*>)

-- (>->) is equivalent to (>>)

*Can understand and use do notation

* Why bother? ﬁ-First example of a home-grown monad

The truth about Do

* Do syntax is just a shorthand:

do actl
act2

actl >> act2

do v <-
act2

actl

actl >>= _

-> act2

—=— |actl >»>= \v -> act2

Example

foo :: I0 ()
foo = do
filename <- getlLine

contents <- readFile filename
putStrLn contents

The truth about Do

Full translation ()

do actl —— |actl >> do ..
- actn
actn

do v <- actl —— |actl >>= \v -> do ..
T actn
actn

do actn o actn

The truth about Do

Full Translation (Il): Let and pattern matching

do let p = e

actn

let p = e in
do ..
actn

do pattern <- actl

actn

let f pattern

f _
in actl >>= f

do ..
actn
fail “Error”

Pictures from a blog post about

functors, applicatives and monads

http://adit.io/posts/2013-04-17-
functors, applicatives, and _monads_in_pictures.html

Aditya Y. Bhargava

getLine :: IO String

reaAF&lﬁ.

readFile :: FilePath -> IO String

putStrLln :: String -> IO |

All three functions take a value (or no value) and
produce an 10 “wrapped” value

The function >>= allows us to join them together

getLine >>= readFile >>= putStrLn

2.V8 T 1o
READ A fILE

Maybe

MAYBE /

Just a N ot\r\\'v\c]

N A
CONTEXT

Here is a function

They can be composed

Here is a function

half x = if even Xx
then Just (x “div’ 2)
else Nothing

What if we feed it a wrapped value?

We need to use >>= to shove our wrapped value into the function

Here's how it works:

> Just 3 >>= half

Nothing

> Just 4 >>= half
Just 2

> Nothing >>= half
Nothing

What's happening inside? Monad is another typeclass. Here’s a partial definition:

class Monad m where
(>>=) :: ma -> (a->mb) -=>mb

>>=

(>>_;) e Mo —> C(L“‘) ML) - Mb

. 7 N\
1.>= S 2. AD A & AND T
A M b3y Fonemon TRAT RETLENS
Gl RETURNG A MONAD A MONAD

CL\KE \M»\?)

>>=

Just 20 >>= half >>= half
>>= half

Instance Monad Maybe

* Maybe is a very simple monad

instance Monad Maybe where
Just x >>= k k X

Nothing >>= _ = Nothing
return = Just
fail s = Nothing

Although simple it can be useful...

Congestion Charge Billing
>

!
‘
"L

ARSI
il | SN, Y
XY AN ~

-

vl T

‘g .

f~'

“"Betalstation Bl

7
AN \ N - s

|

)

e S —

......

Har hamnar betalstationerna

I dag fattar kommunfullmaktige beslut om trangselskatt., Kemmunstyrelsens
forslag ar en inre ring runt centrala Géteborg med 40 betalstationer.

) Betalstation

Vardagar -\
ﬁ | (ej dag fore son- / \
: ! och helgdag) \-....»—"\ Tingstads-

SRVAN = Kl Kr \t\unneln
\ 0630-065° 10:- ‘.‘
0700 - 0729 15:- ’ 1 OLSKROKEN
0730- 0829 20:- ./S.‘h i
0830- 085 15:- : IE(S)

0900- 1529 10:-
1530- 1559 15:-
1600-1729 20:-
1730-1759 15:-
1800- 1829 10:-
——— e

-
N
‘ NE IS 2% J
8 -,

/ MAJORNA
o7 Alvsborgs- \

bron

|
)
A DAL 3
L

ANGGARQ_E_N_.—_...-?
| o KROKSUATT,

I
GOTEBORG % \
E

JOHANNEB

,,,,,,,,

(dlla: Vagverket Grafik: GP

Congestion Charge Billing

Registration number used to find the
Personnummer of the owner

carRegister :: [(RegNr,PNr)]

Personnummer used to find the name of the
owner

nameRegister :: [(PNr,Name)]
Name used to find the address of the owner
addressRegister :: [(Name,Address)]

Example:

Congestion Charge Billing

type CarReg = String ; type PNr = String
type Name = String ; type Address = String

carRegister :: [(CarReg,PNr)]
carRegister
= [("JBD @07","750408-0909"), ...]

nameRegister :: [(PNr,Name)]
nameRegister
= [("750408-0909", "Dave”“), ...]

addressRegister :: [((Name,PNr),Address)]
addressRegister =

[(("Dave","750408-0909"),"42 Streetgatan\n Askim")

s e]

Example:
Congestion Charge Billing

With the help of
lookup :: Eq a => a -> [(a,b)] -> Maybe b
we can return the address of car owners

billingAddress :: CarReg -> Maybe (Name, Address)
billingAddress car =
case lookup car carRegister of
Nothing -> Nothing
Just pnr -> case lookup pnr nameRegister of
Nothing -> Nothing
Just name ->
case lookup (name,pnr) addressRegister of
Nothing -> Nothing
Just addr -> Just (name,addr)

Example:
Congestion Charge Billing

Using the fact that Maybe is a member of class Monad
we can avoid the spaghetti and write:

billingAddress car = do
pnr <- lookup car carRegister
name <- lookup pnr nameRegister
addr <- lookup (name,pnr) addressRegister
return (name,addr)

Example:
Congestion Charge Billing

Unrolling one layer of the do syntactic sugar:

billingAddress car ==

lookup car carRegister >>= \pnr ->

do
name <- lookup pnr nameRegister
addr <- lookup (name,pnr) addressRegister
return (name,addr)

« lookup car carRegister gives Nothing
then the definition of >>= ensures that the whole
result is Nothing

* return is Just

Summary

* We can use higher-order functions to build
Parsers from other more basic Parsers.

 Parsers can be viewed as an instance of
Monad
 \We can build our own Monads!

— A lot of "plumbing” is nicely hidden away

— The implementation of the Monad is not visible
and can thus be changed or extended

IO t

Instructions for
interacting with
operating
system

Run by GHC
runtime system
produce value
of type t

Gen t

e Instructions for

building random
values

Run by
quickCheck to
generate
random values

of type t

Parser t

* |Instructions for

parsing

 Run by parse

to parse a
string and
Maybe produce
a value of type
t

Three Monads

Code

* Parsing.hs

— module containing the parser monad and simple
parser combinators.

See course home page

* We can build our own Monads!
— A lot of "plumbing” is nicely hidden away
— A powerful pattern, used widely in Haskell

— A pattern that can be used in other languages, but
syntax support helps
* F# computation expressions
« Scala

More examples

 http://adit.io/posts/2013-06-10-three-useful-
monads.html

 stack (slides/video from last year)

Another Example: A Stack

» A Stack is a stateful object

» Stack operations can push values on, pop
values off, add the top elements

type Stack = [Int]
newtype StackOp t = StackOp (Stack -> (t,Stack))

-- the type of a stack operation that produces
-- a value of type t

pop :: StackOp Int

push :: Int -> StackOp ()

add :: StackOp ()

Running a StackOp

type Stack = [Int]
newtype StackOp t = StackOp (Stack -> (t,Stack))

run (StackOp f) = f

-- run (StackOp f) state = f state

Operations

pop :: StackOp Int
pop = StackOp $ \(x:xs) —> (x,xs) —— can fail

push :: Int —> StackOp ()
push 1 = StackOp $ \s —> ((),i:s)

add :: StackOp ()
add = StackOp $ \(x:y:xs) —> ((),x+y:xs) —— can fail
|

Building a new StackOp...

swap :: StackOp ()
swap = StackOp $ \s ->
let (x,s') = run pop s
(y,s'"') = run pop s’
(,s""") = run (push x) s"'
(,s'"""") = run (push y) s'"’
in (C, s"'"")

No thanks!

StackOp is a Monad

« Stack instructions for producing a value

—— (>>=) :: StackOp a —> (a —> StackOp b) —-> StackOp b
instance Monad StackOp
where return n = StackOp $ \s —> (n,s)
sop >>= f = StackOp $ \s —>
let (i,s') = run sop s
in run (f i) s

So now we can write...

swap

Pop
b <- pop

Stack t Maybe t

Stack |nstructions for
Instructions either
producing a producing a
value of type t value or

Run by run nothing

 Run by ?? (not
an abstract
data type)

Two More Monads

