Monads

David Sands

Parsing

e So far; how to write

readExpr :: String -> Maybe Expr

« Key idea:

type Parser = String -> Maybe (a, String)

* This lecture: Building Parsers; Parsers as a
new type of “instructions” — i.e. a monad.

The Big Picture

RefactoredParser

Refactor/generatise Alternative approach

+ Few basic bulding Parsing. s

blocks (datatype

ReadExpr.hs dependent) » Parser as an
P instance of
-Parser Morad
* “Brute force” “Combinators” onha
parser.
 Big ugly case
expressions. RefactoredReadExpr ReadExprMonadic

* Minimal reuse.

* A few lines of code * A few lines of code

Refactor

Recall some key building blocks

succeed :: a -> Parser a
succeed a = P $ \s -> Just(a,s)

sat :: (Char -> Bool) -> Parser Char
(>->) :: Parser a -> Parser b -> Parser b
(>*>) :: Parser a -> (a -> Parser b) -> Parser b

Main> parse (digit >*> \a -> sat (==a)) "22xx"
Just ('2',"xxx"

Main> parse (digit >*> \a -> sat (==a)) "12xx"
Nothing

The Parser Monad

* Using these building blocks we can make
Parser an instance of the class Monad

— We get a language of “Parsing Instructions”

— Another way to write Parsers using do
notation

Monads seen so far:
|O vs Gen

1O A Gen A
\ } \ }
| |
e |nstructions to build a * |nstructions to create a
value of type A by random value of type A

interacting with the
operating system

| * Run by the QuickCheck
* Run by the ghc runtime library functions to
system perform random tests

Monads = Instructions

* What is the type of doTwice?

Main> :1 doTwice

doTwice :: Monad a => a b -> a (b,b)

p—

ven the kind of
instructions can vary!
Different kinds of

\Who obeys them.

Instructions, depending on

/

fWhatever kind of A
result argument
produces, we get
\a pair of them /

|O means operating
system.

Monads and do notation

* To be an instance of class Monad you
need (as a minimal definition) two
operations: >>= and return

class Monad m where
(>>=) ::ma ->(a->mb) ->mb

return :: a -> m a
Default
(>>) ::ma->mb ->mb implementations

X >> Y =X >=_ ->Yy

fail :: String -> m a
fail msg = error msg

Monad

* To be an instance of class Monad you
need two operations: >>= and return

instance Monad Parser where
return = succeed

(>>=) = (>%>)
-- (>->) is equivalent to (>>)

* Why bother? ﬁ-First example of a home-grown monad

«Can understand and use do notation

The truth about Do

* Do syntax is just a shorthand:

do actl —_—
act2

do v <- actl
act2

actl >> act2 | T~ |actl >>= _

-> act2

actl >>= \v -> act2

The truth about Do

Full translation (I)

do actl __ |actl >> do ..
T actn
actn

do v <- actl | __ |actl >>= \v -> do ..
o actn
actn

do actn —— |actn

The truth about Do

Full Translation (ll): Let and pattern matching

do let p = e

actn

let p = e in
do ..
actn

do pattern <- actl

actn

let £ pattern

f _
in actl >»>= f

do ..
actn
fail “Error”

Example

 recall doTwice

doTwice :: Monad m => m a -> m (a,a)
doTwice cmd =
do a <- cmd
b <- cmd
return (a,b)

Main> parse (doTwice nhumber) 9876”
Just (('9’,’8’), "76”)

Example revisited: Parsing

ExpreSSIOnS (modified to use the new

expr :: Parser Expr version of Parser type.
expr s1 = case parse num s1 of Otherwise as before

Just (a,s2) -> case s2 of
'+':83 -> case parse expr s3 of
Just (b,s4) -> Just (Add a b, s4]
Nothing -> Just (a,s2)
_ -> Just (a,s2)
Nothing -> Nothing

Monadic style abstracts expr :: Parser Expr
away from implementation expr =do a <- num
of the Parser type 'y
yp = do char '+
b <- expr

return (Add a b)
+++ return a

Parser Combinators

zeroOrMore, oneOrMore :: Parser a -> Parser [a]
zeroOrMore p = oneOrMore p +++ return []
oneOrMore p = do v <- p

vs <- zeroOrMore p
return(v:vs)

Main> parse (oneOrMore number) "9876+’
Just ("9876”,"+”

Combinator: a function which
take functions as arguments

and produces a function as a
S result)

Parser Combinators

hat ::

nat

int ::

int

Parser Int -- Parses a non negative integer
do xs <- oneOrMore number
return (read xs)

Parser Int

nat +++

do char '-'
n <- nat
return (-n)

Chain
(Old definition

chainpopf=P $\s1-> {(modified to work with
case parse p s1 of the new type)
Just (a,s2) -> case s2 of
c:s3 | c == op -> case chain p op f s3 of
Just (b,s4) -> Just (fa b, s4)
Nothing -> Just (a,s2)
-> Just (a,s2)

Nothing -> Nothing

/

chainpopf=dov<-p

vs <- zeroOrMore (char op >> p)

return (foldr1 f (v:vs)) Prelude.foldr1 :

fold operation for
lists with at least
one element (no

"nil” case)

~

)

Factor

factor :: Parser Expr
factor (°(’:s) =
case expr s of
Just (a, ’)’:sl1l) -> Just (a, sl1)
-> Nothing

factor s = num s
factor :: Parser Expr

factor = num +++
do char °’(’°
e <- expr
char ’)’
return e

Summary

* We can use higher-order functions to build
Parsers from other more basic Parsers.

 Parsers can be viewed as an instance of
Monad

* We can build our own Monads!

— A lot of "plumbing” is nicely hidden away

— The implementation of the Monad is not
visible and can thus be changed or extended

IO t Gen t Parser t

* Instructions * Instructions for | | ¢ Instructions
for interacting building for parsing
with operating random values
system * Run by parse

* Runby GHC ||. Run by to parse a
runtime quickCheck string and
system to generate Maybe
produce value || random values || produce a
of type t of type t value of type t

Three Monads

Code

» Parsing.hs

— module containing the parser monad and
simple parser combinators.

 ReadExprMonadic.hs
— A reworking of Read

See course home page

Maybe another Monad

 Maybe is a very simple monad

instance Monad Maybe where

Just x >>= k = k X
Nothing >>= _ = Nothing
return = Just
fail s = Nothing

Although simple it can be useful...

Congestion Charge Billing
AN

A

V

PO

e

LARNAARE BT La
" TrYITYTTY

Har hamnar betalstationerna

I dag fattar kommunfullmaktige beslut om trangselskatt. Kom num[vwlwmx
forslag ar en inre ring runt centrala G s0teborg med 40 betalstationer,

Betalstation

Vardagar
(ej dag fore sén-
och helgdag)

Kl Kr
0630- 0659 10:-
0700- 0729 15:- | "%
0730- 0829 20:- [aug*
0830- 0859 15:-
0900- 1529 10:-
1530- 1559 15:-

.49, —\\
\'-»“'\ Tingstads-

-
‘tunneln

N,

|
i |
I

OLSKROKEN |
Gota
L Alw;hron

)

i

|

A |

i
o
[}

{

Y-z '4\ GOTEBORG %
N

N ‘\
Tt
-

1600- 1729 20:- MAJORNA \
1730-1759 15:- AN 2
1800- 1828 10:- ko o~ \ JOHANNEBERG
, . \ \
- g “ A) e
lAN GARDEN sl s
L KROKSUATT,

Kdlla: vagverket Grafik: GP

Congestion Charge Billing

Registration number used to find the
Personnummer of the owner

carRegister :: [(RegNr,PNr)]

Personnummer used to find the name of the
owner

nameRegister :: [(PNr,Name)]
Name used to find the address of the owner
addressRegister ::

[(LongName,Address)]

Example:
Congestion Charge Billing

type CarReg = String ; type PNr = String
type Name = String ; type Address = String

carRegister :: [(CarReg,PNr)]
carRegister
= [("JBD 007", "750408-0909"), ...]

nameRegister :: [(PNr,Name)]
nameRegister
= [("750408-0909","Dave”), ...]

addressRegister :: [((Name,PNr),Address)]
addressRegister =
[(("Dave","750408-0909"),"42 Streetgatan\n Askim")

s e]

Example:
Congestion Charge Billing

With the help of
lookup :: Eq a => a -> [(a,b)] -> Maybe b
we can return the address of car owners

billingAddress :: CarReg -> Maybe (Name, Address)
billingAddress car =
case lookup car carRegister of
Nothing -> Nothing
Just pnr -> case lookup pnr nameRegister of
Nothing -> Nothing
Just name ->
case lookup (name,pnr) addressRegister of
Nothing -> Nothing
Just addr -> Just (name,addr)

Example:
Congestion Charge Billing

Using the fact that Maybe is a member of class Monad
we can avoid the spaghetti and write:

billingAddress car = do
pnr <- lookup car carRegister
name <- lookup pnr nameRegister
addr <- lookup (name,pnr) addressRegister
return (name,addr)

Example:
Congestion Charge Billing

Unrolling one layer of the do syntactic sugar:

billingAddress car ==
lookup car carRegister >>= \pnr ->
do
name <- lookup pnr nameRegister
addr <- lookup (name,pnr) addressRegister
return (name,addr)

 lookup car carRegister gives Nothing
then the definition of >>= ensures that the whole
result is Nothing

* return IS Just

Summary

* We can use higher-order functions to build
Parsers from other more basic Parsers.

 Parsers can be viewed as an instance of
Monad

* We can build our own Monads!

— A lot of "plumbing” is nicely hidden away

— The implementation of the Monad is not
visible and can thus be changed or extended

