Niklas Gustavsson LB

ngn@spotify.com ‘ /

Wx-

&

@protocol7



Spotify Gbg

Development office
30-ish developers
Owns playback and Your music and Social

Street team



10,000,000

1,000,000

100,000

10,000

1,000

100

10

0

1970

Intel CPU’

(sources: Intel, Wikipedia, K. OFukotun)

Trends

@ Transistors (000)
@ Clock Speed (MHz)
A Power (W)

@ Perf/Clock (ILP)

I

1975 1980 1985 1990

2000 2005 2010






How can you go faster?



Cache lines



Java data structures



Lock-less programming



Lock-less programming

 |ocks requires coordination among cores

e synchronized {}



RMW

e Atomic operations supported by the CPU



CAS



public final int getAndSet(int newValue) {
for (;;) {
int current = get();
1f (compareAndSet(current, newValue))
return current,;

J
J
J



Java memory model



Threads



Concurrent programming models

Threads, shared memory
Async, futures, promises
Actors, message passing

Reactive



Why async?



Scaling it out

e Requests block for extended times

e |Large number of incoming requests



Executor and ExecutorService

e Abstraction for running tasks
e Usually on a thread pool

e Submit tasks (Runnable or Callable) for execution



Futures and Promises

e Futures holds a future result of a computation

e Promises are a promise to, in the future, provide result of a
computation



ListenableFuture

A Future require blocking when getting the value
CompletableFuture in Java 8
ListenableFuture in Google’s Guava

Allows for simple, async composition



Futures.allAsList()/successful AsList()

allAsList() returns the results from all futures, or fails it at least
one future fails

successfulAsList() returns the results from those futures which
do not falil

CompletableFuture.allOf()



Futures.transform()

e Applies a function, sync or async, to the result of a
ListenableFuture

e CompletableFuture.thenApply()/thenApplyAsync()



Turtles all the way down

e Java NIO

e select/epoll based I/0

e Low level API

e Netty/MINA

e Async protocols
e Message queuing

e https:/github.com/spotify/netty-
zmtp




Limiting concurrency



Unbounded queues are evil




Limiting concurrency

Thread pools are much like a queue
Always limit thread pools

e Approximately number of cores
Prefer dropping tasks if possible

Provide proper back pressure



Further reading

java.util.concurrent JavaDocs
Java Concurrency in Practice
Anything by Doug Lea

* |ncluding source code

Anything by Martin Thompson,

e @mjpt/7/7

Netty

BRIAN GOETZ

WITH TiMm PEIERLS, JosHua BLoCcH,
JOSEPH BOWBEER, DAVID HOLMES,
AND DOUG LEA




Questions?

ngn@spotify.com
@protocol7




