
sample exam
Concurrent Programming tda383/dit390

Sample exam March 2016 Time: ? – ? Place: Johanneberg

Responsible Michał Pałka 0707966066

Result Available no later than ?-?-2016

Aids Max 2 books and max 4 sheets of notes on a4 paper (written or printed); additionally
a dictionary is allowed

Exam grade There are 6 parts (9 + 15 + 8 + 12 + 8 + 16 = 68 points); a total of at
least 24 points is needed to pass the exam. The grade for the exam is determined as
follows.

Chalmers Grade 3: 24–38 points, grade 4: 39–53 points, grade 5: 54–68 points
gu Godkänd: 24–53 points, Väl Godkänd: 54–68 points

Course grade To pass the course you need to pass each lab and the exam. The grade for
the whole course is based on the points obtained in the exam and the labs. More
specifically, the grade (exam + lab points) is determined as follows.

Chalmers Grade 3: 40–59 points, grade 4: 60–79 points, grade 5: 80–100 points
gu Godkänd: 40–79 points, Väl Godkänd: 80–100 points

Please read the following guidelines carefully:

• Please read through all questions before you start working on the answers

• Begin each part on a new sheet

• Write your anonymous code on each sheet

• Write clearly; unreadable == wrong!

• Solutions that use busy-waiting or polling will not be accepted, unless stated other-
wise

• Don’t forget to write comments with your code

• Multiple choice questions are awarded full points if exactly the correct answers are
selected, and zero points otherwise

• The exact syntax is not crucial; you will not be penalized for missing for example a
parenthesis or a comma

Answers are shown in red.
Additional explanations, which are not part of the answers, are shown in purple.

1

Part 1: General knowledge (9p)

Are the following Erlang functions tail-recursive?

(1p) 1.1. 1 sum([]) -> 0;
2 sum([X|Xs]) -> X + sum(Xs).

(A) Yes
Ì

(B) No

(1p) 1.2. 1 rev([], Ac) -> Ac;
2 rev([X|Xs], Ac) -> rev(Xs, [X|Ac]).

Ì

(A) Yes (B) No

(1p) 1.3. 1 loop(N) ->
2 receive
3 {incr, Pid} ->
4 Pid ! {incr_reply, N},
5 loop(N + 1);
6 {reset, Pid} ->
7 Pid ! reset_reply,
8 loop(0)
9 end.

Ì

(A) Yes (B) No

(1p) 1.4. 1 loop(N) ->
2 io:format("loop iteration~n"),
3 receive
4 {add, Pid, M} ->
5 Pid ! add_reply,
6 loop(N + M);
7 {read, Pid} ->
8 Pid ! {read_reply, N},
9 loop(N)

10 end.

Ì

(A) Yes (B) No

2

Do the following snippets of Java code perform busy-waiting? Assume that the variables s1
and free are not referenced by any other part of the code, and that critical_section()
and non_critical_section() always change the state of the system (they do something
meaningful).

(1p) 1.5. 1 Semaphore s1;
2 boolean free = true;
3 // ...
4 // Code run by threads 1 and 2
5 while(true) {
6 non_critical_section();
7 bool crit = false;
8 do {
9 s1.acquire();

10 try {
11 crit = free;
12 free = false;
13 } finally {s1.release()}
14 } while (!crit);
15 critical_section();
16 s1.acquire();
17 try { free = true;
18 } finally {s1.release()}
19 }

Ì

(A) Yes (B) No

When one thread is in the critical section, the other thread will keep looping
checking if free becomes true without making any progress.

(1p) 1.6. 1 Semaphore s1;
2 boolean free = true;
3 // ...
4 // Code run by threads 1 and 2
5 while(true) {
6 non_critical_section();
7 bool crit = false;
8 s1.acquire();
9 try {

10 crit = free;
11 free = false;
12 critical_section();
13 } finally {s1.release()}
14 }

(A) Yes
Ì

(B) No

Here each thread will always make progress in every iteration, as the critical section
will be executed.

3

(3p) 1.7. Modern versions of Java provide two variants of monitors: (a) one based on the
synchronized keyword and the wait(), notify() and notifyAll() methods;
and (b) one based on the ReentrantLock class (Java 5 monitors). List at least
three important differences (there are more) between them from the point of view
of the user of these mechanisms.

There are six important differences:

• A Java 5 lock can have many associated condition variables, unlike an intrinsic
lock that has one condition variable

• Java 5 locks can provide fairness

• Locking an unlocking using the synchronized keyword is tied to methods or
blocks of code

• Using synchronized blocks ensures that the lock is unlocked whenever an
exception is thrown and control leaves that block of code

• Java 5 locks provide the tryLock() method that can be used to acquire the
lock without blocking

• Java 5 locks provide the lockInterruptibly() method that can be inter-
rupted by thread cancellation

Mentioning any three of these points gives a full mark.

4

Part 2: State spaces (15p)

Here is yet another algorithm to solve the critical section problem, built from atomic if
statements (p2, q2 and p5, q5). The test of the condition following if, and the correspond-
ing then or else action, are both carried out in one step, which the other process cannot
interrupt.

integer S := 0

p0 loop forever
p1 non-critical section
p2 if even(S) then S := 4

else S := 5
p3 await (S != 1 && S != 5)
p4 critical section
p5 if S >= 4 then S := S-4

else skip

q0 loop forever
q1 non-critical section
q2 if S < 4 then S := 3

else S := 7
q3 await (S != 6 && S != 7)
q4 critical section
q5 if odd(S) then S := S-1

else skip

Below is part of the state transition table for an abbreviated version of this program,
skipping p1, p4, q1 and q4 (the critical and non-critical sections). For example, in line 5
of the table below p3 transitions directly to p5, skipping p4. A state transition table is
a tabular version of a state diagram. The left-hand column lists the states. The middle
column gives the next state if p next executes a step, and the right-hand column gives
the next state if q next executes a step. In many states both p or q are free to execute the
next step, and either may do so. But in some states, such as 5 below, one or other of the
processes may be blocked. There are 10 states in total.

State = (pi, qi, Svalue) next state if p moves next state if q moves

1 (p2, q2, 0) (p3, q2, 4) (p2, q3, 3)
2 (p3, q2, 4) (p5, q2, 4) (p3, q3, 7)
3 (p2, q3, 3) (p3, p3, 5) (p2, q5, 3)
4 (p5, q2, 4) (p2, q2, 0) (p5, q3, 7)
5 (p3, q3, 7) (p5, q3, 7) no move
6 (p2, q5, 3) (p3, q5, 5) (p2, q2, 2)
7 (p3, q3, 5) no move (p3, q5, 5)
8 (p3, q5, 5) no move (p3, q2, 4)
9 (p5, q3, 7) (p2, q3, 3) no move
10 (p2, q2, 2) (p3, q2, 4) (p2, q3, 3)

Complete the state transition table (correctness of the table will not be assessed). Note:
the order of rows in the table does not matter.

Are the following states reachable in the algorithm above? It is enough to check if they
appear in the table

(1p) 2.1. (p2, q3, 4) (A) Yes
Ì

(B) No

5

(1p) 2.2. (p3, q5, 5)
Ì

(A) Yes (B) No

(1p) 2.3. (p3, q5, 4) (A) Yes
Ì

(B) No

(1p) 2.4. (p5, q3, 7)
Ì

(A) Yes (B) No

(3p) 2.5. Prove from your state transition table that the program ensures mutual exclusion.

Mutual exclusion holds if no state is reachable where both p and q are in the
critical section. We are using an abbreviated version of the program where the
critical sections are part of the statements following them (p5 and q5).

The condtion that we are going to show is that both p and q are not in states p5
and q5 at the same time in our abbreviated program. To show the condition, it
is enough to use the table to conclude that there are no reachable (p5, q5, ?)
states.

(2p) 2.6. State formally the property that the program does not deadlock.

We will again use the abbreviated version of the program where critical sections
are part of the statements following them (p5 and q5).

We make the assumption that the critical sections theselves cannot deadlock.
Deadlock occurs if at least one of p or q finishes the non-critical section, but none
of them is able to reach the critical section. That is, if the program’s state is of
the form (p2, ?, ?), (p3, ?, ?), (?, q2, ?) or (?, q3, ?) and no state of
the form (p5, ?, ?) or (?, q5, ?) is reachable from that state. Freedom from
deadlock is the opposite property, that is when the program is able to reach one of
the latter states from the former ones.

Technically, we should also show that leaving the critical section does not deadlock.
Concretely, this means that a state of the form (p1, ?, ?) is reachable from any
reachable state of the form (p5, ?, ?) and a state of the form (?, q1, ?) is
reachable from any reachable state of the form (?, q5, ?) in the unabbrieviated
program. When translating the condition to one for the abbreviated program we
must take into account that the non-critical sections may not terminate.

The other condition that we need to show (no deadlock on leaving the critical
section) for the abbreviated program is that when the program’s state is of the
form (p5, ?, ?), it will eventually reach a a state of the form (p2, ?, ?) unless
p’s non-critical section does not terminate; and similarly that when the program’s
state is of the form (?, q5, ?), it will eventually reach a a state of the form
(?, q2, ?) unless q’s non-critical section does not terminate. Showing this is
straightforward, as statements in p5 and q5 will never block.

(3p) 2.7. Prove from your state transition table that the program does not deadlock.

First, looking at the table we show that starting from any reachable state of the
form (p2, ?, ?) the program can progress to a state of the form (p3, ?, ?),

6

and similarly from any state of the form (?, q2, ?) the program can progress
to a state of the form (?, q3, ?). Secondly, from the table we can see that for
any reachable state of the form (p3, ?, ?) the program can progress to a state
of the form (p5, ?, ?) or (?, q5, ?). Similarly, starting with (?, q3, ?) the
program will also reach a state of the form (p5, ?, ?) or (?, q5, ?).

Showing no deadlock in leaving the critical section is straightforward, as statements
in p5 and q5 will never block.

Do the following invariants hold? The notation p2, p3, p4, etc. denotes the condition that
process p is currently executing line 2, 3, 4, etc. It is enough to check if the invariants hold
for all the states from the table.

(1p) 2.8. q3 Ñ pS “ 5 _ S “ 7q (A) Yes
Ì

(B) No

(1p) 2.9. pp3 ^ q3q Ñ pS “ 5 _ S “ 7q
Ì

(A) Yes (B) No

(1p) 2.10. pp3 ^ q3q Ñ S “ 7 (A) Yes
Ì

(B) No

7

Part 3: Concurrent Java i (8p)

The Regional Development Bank continues its growth, which also exposed a performance
problem with its it system. Currently, the bank uses the following Java class for holding
its accounts.

1 class Accounts {
2 Lock l = new ReentrantLock();
3
4 Account[] store; // Map account id to Account object
5 // ...
6
7 // amount is always non-negative, source and target are always
8 // valid account ids
9 public boolean transfer(int source, int target, int amount) {

10 l.lock()
11 try {
12 int tmp = store[source].getBalance();
13 if (tmp < amount) return false; // Transfer failed
14 store[source].updateBalance(tmp - amount);
15 store[target].updateBalance(store[target].getBalance() + amount);
16 } finally {l.unlock() }
17 return true;
18 }
19 }

The Account class is defined as follows.

1 class Account {
2 int id;
3 int balance;
4 // ...
5 int getBalance () {
6 return balance;
7 }
8 void updateBalance (int newB) {
9 balance = newB;

10 }
11 }

A consultant was called in, and within two days he diagnosed the problem: There is too
much contention on the Accounts object, which causes the threads to wait for too long time.
Within two more days, he had a proposal on how to solve the problem. The proposed
solution avoids contention by locking individual accounts instead of locking the whole
table. Below are the new versions of the Accounts and Account classes.

1 class Accounts {
2 Account[] store; // Map account id to Account object

8

3 // ...
4
5 // amount is always non-negative, source and target are always
6 // valid account ids
7 public boolean transfer(int source, int target, int amount) {
8 store[source].l.lock()
9 try {

10 store[target].l.lock()
11 try {
12 int tmp = store[source].getBalance();
13 if (tmp < amount) return false; // Transfer failed
14 store[source].updateBalance(tmp - amount);
15 store[target].updateBalance(store[target].getBalance()
16 + amount);
17 } finally {store[target].l.unlock() }
18 } finally {store[source].l.unlock() }
19 return true;
20 }
21 }

1 class Account {
2 // Account is used only internally, so public here is OK
3 public Lock l = new ReentrantLock();
4 int id;
5 int balance;
6 // ...
7 int getBalance () {
8 return balance;
9 }

10 void updateBalance (int newB) {
11 balance = newB;
12 }
13 }

The plan is to move the changes to production nextweek. However, looking at the proposed
update, you see a problem that can have serious consequences for the bank.

(4p) 3.1. Explain what can go wrong with the new code. For a full mark, you need to provide
a concrete scenario, which demonstrates the problem. You may assume that you
can populate the store table with any account data you wish.

The code can deadlock. For example, consider that there are two accounts in the
table: account 0 and account 1. If two threads try to transfer money between these
accounts, a deadlock may occur.

Here is a concrete situation. Both accounts have 10 dollars on them. Thread 1
wants to transfer 10 dollars from account 0 to account 1, while thread 2 wants

9

to transfer 10 dollars the other way round. Thread 1 locks the lock of account 0,
followed by thread 2 locking the lock of account 1. Then both threads will deadlock
waiting for the locks of the accounts that were locked by the other thread.

(4p) 3.2. Propose how to fix the problem that you identified, and implement your proposal.

We fix the problem by introducing a global locking order on all locks in the accounts
table. We will ensure that if a thread locks two locks at the same time, the lock of
the account with a lower id will be locked first. This way we will avoid the circular
locking situation.

To implement this, we will only need to modify the transfer() method. We add
this code between lines 7 and 8 of the Accounts class.

int lower = Math.min(source, target);
int upper = Math.max(source, target);

We also modify lines 8, 10, 17 and 18 of the Accounts class (the line numbers refer
to the original ones before our additions).

8 store[lower].l.lock()
10 store[upper].l.lock()
17 } finally {store[upper].l.unlock() }
18 } finally {store[lower].l.unlock() }

Instead of Math.min and Math.max(), if-statemets may be used. Here are some
other ways in which this problem can be solved.

• By using tryLock() with a timeout on to lock the second lock, and when
that fails unlocking the first lock and retrying. This solution would not get
the full points, because it might end up performing polling.

• By using the non-blocking tryLock() and waiting some (random) amount
of time before retrying. This solution might also end up polling, and would
not get the full points.

Here is the full code of the solution for reference.

1 class Accounts {
2 Account[] store; // Map account id to Account object
3 // ...
4
5 // amount is always non-negative, source and target are always
6 // valid account ids
7 public boolean transfer(int source, int target, int amount) {
8 int lower = Math.min(source, target);
9 int upper = Math.max(source, target);

10 store[lower].l.lock()
11 try {
12 store[upper].l.lock()

10

13 try {
14 int tmp = store[source].getBalance();
15 if (tmp < amount) return false; // Transfer failed
16 store[source].updateBalance(tmp - amount);
17 store[target].updateBalance(store[target].getBalance()
18 + amount);
19 } finally {store[upper].l.unlock() }
20 } finally {store[lower].l.unlock() }
21 return true;
22 }
23 }

11

Part 4: Concurrent Java ii (12p)

In this assignment you have to implement a pipeline of processes in Java, which transforms
a stream of values by applying a number of functions in a sequence to each value.

f1 f2 . . . fn
input output

The pipeline should be implemented using the following class.

1 class Pipeline {
2 // Initialize the pipeline
3 public Pipeline(Stage[] stages) {}
4 // Start the threads
5 public void run () throws InterruptedException {}
6 // Feed one more input to the pipeline
7 public void feed(T input) throws InterruptedException {}
8 }

The pipeline is constructed based on an array of stages (described below). The run()
method should start a thread for each stage. The feed() method should feed one more
input to a running pipeline, and could be called by different threads concurrently. The
type T is an arbitrary type. The input should get processed by each of the stages in turn.
If a stage is busy processing a previous input, the input should be buffered in a one-slot
buffer. Thus, the feed() method may block. There is no way of getting the results from
the pipeline. Instead, the last stage should perform a side-effect such as printing the
results. Pipeline stages are specified by defining subclasses of the following class.

1 abstract class Stage {
2 // This class is unsynchronized
3 abstract T compute (T x);
4 }

Example

1 class T { public int x; public T(int y) { x = y; } }
2
3 class Stage1 {
4 T compute (T a) {
5 return T(a.x + 2);
6 }
7 }
8 class Stage2 {
9 T compute (T a) {

10 return T(a.x * 3);
11 }
12 }

12

13 class Stage3 {
14 T compute (T a) {
15 System.out.println("Got a.x = " + a.x);
16 return a;
17 }
18 }
19
20 // ...
21 Stage[] stages = { new Stage1(), new Stage2(), new Stage3() };
22 Pipeline p = new Pipeline (stages);
23 p.run();
24 p.feed(new T(2));
25 p.feed(new T(4));
26 p.feed(new T(3));
27 // ...

The code above should print the following three lines after some time.

Got T.x = 12
Got T.x = 18
Got T.x = 15

(8p) 4.1. Your job is to implement the Pipeline class to provide the functionality described
above.

1 class Pipeline {
2 SThread[] threads;
3
4 // A thread that runs a single stage of the pipeline
5 // The object contains a one-slot buffer
6 static class SThread extends Thread {
7 Stage s;
8 SThread next;
9 // Input slot for the stage

10 boolean free = true;
11 T slot;
12
13 SThread(Stage ss, SThread n) {
14 s = ss;
15 next = n;
16 }
17 synchronized void put(T t) throws InterruptedException {
18 while (!free) wait();
19 slot = t;
20 free = false;
21 notifyAll();
22 }

13

23 synchronized T get() throws InterruptedException {
24 while (free) wait();
25 T tmp = slot;
26 free = true;
27 slot = null;
28 notifyAll();
29 return tmp;
30 }
31 public void run() {
32 try {
33 while(true) {
34 T cur = get();
35 T res = s.compute(cur);
36 if (next != null) next.put(res);
37 }
38 } catch (InterruptedException e) {
39 System.err.println("Thread interrupted");
40 }
41 }
42 }
43 // Initialize the pipeline
44 public Pipeline(Stage[] stages) {
45 int n = stages.length;
46 threads = new SThread[n];
47 SThread s = null;
48 // Create threads starting from the last one
49 // Each thread gets a reference to the next one
50 for (int i = n-1; i >= 0; --i) {
51 SThread tmp = new SThread(stages[i], s);
52 threads[i] = tmp;
53 s = tmp;
54 }
55 }
56 // Start the threads
57 public void run () throws InterruptedException {
58 for(int i = 0; i < threads.length; ++i) threads[i].start();
59 }
60 // Feed one more input to the pipeline
61 // Don't allow any more data after join() has been callled.
62 public void feed(T input) throws InterruptedException {
63 threads[0].put(input);
64 }
65 }

The above code handles the InterruptedException, but you can ignore it without

14

losing points.

(4p) 4.2. Additionally, implement the void join() method in the Pipeline class, which
would terminate all pipeline threads after they have finished processing all the
outstanding elements. The method should block until all the threads terminate.

The code below is a modification of the answer for 4.1.

1 class Pipeline {
2 SThread[] threads;
3 boolean finishing = false;
4
5 // A thread that runs a single stage of the pipeline
6 // The object contains a one-slot buffer
7 static class SThread extends Thread {
8 Stage s;
9 SThread next;

10 // Input slot for the stage
11 boolean free = true;
12 int waitingPuts = 0;
13 T slot;
14 boolean terminating = false;
15
16 SThread(Stage ss, SThread n) {
17 s = ss;
18 next = n;
19 }
20
21 synchronized void put(T t) throws InterruptedException {
22 ++waitingPuts;
23 while (!free) wait();
24 slot = t;
25 free = false;
26 --waitingPuts;
27 notifyAll();
28 }
29
30 // If get() gets woken up by terminate() and there
31 // is not element, then it will return null
32 synchronized T get() throws InterruptedException {
33 while (!(!free || passedLastOne())) wait();
34 T tmp = slot;
35 free = true;
36 slot = null;
37 notifyAll();
38 return tmp;

15

39 }
40
41 // Set the terminating flag to true and
42 // wake up a potentially waiting get()
43 synchronized void terminate() {
44 terminating = true;
45 notifyAll();
46 }
47
48 // This condition is true if there will be no
49 // more elements
50 synchronized boolean passedLastOne() {
51 return waitingPuts == 0 && free && terminating;
52 }
53
54 public void run() {
55 try {
56 while(!passedLastOne()) {
57 T cur = get();
58 if (cur == null) break;
59 T res = s.compute(cur);
60 if (next != null) next.put(res);
61 }
62 if(next != null) next.terminate();
63 } catch (InterruptedException e) {
64 System.err.println("Thread interrupted");
65 }
66 }
67 }
68
69 // Initialize the pipeline
70 public Pipeline(Stage[] stages) {
71 int n = stages.length;
72 threads = new SThread[n];
73 SThread s = null;
74 // Create threads starting from the last one
75 // Each thread gets a reference to the next one
76 for (int i = n-1; i >= 0; --i) {
77 SThread tmp = new SThread(stages[i], s);
78 threads[i] = tmp;
79 s = tmp;
80 }
81 }
82 // Start the threads
83 public void run () throws InterruptedException {

16

84 for(int i = 0; i < threads.length; ++i) threads[i].start();
85 }
86 // Feed one more input to the pipeline
87 public void feed(T input) throws InterruptedException {
88 synchronized (this) {
89 if (finishing) throw new RuntimeException();
90 }
91 threads[0].put(input);
92 }
93
94 public void join() throws InterruptedException {
95 synchronized (this) {
96 finishing = true;
97 }
98 // Send the terminate signal to the first stage
99 threads[0].terminate();

100 // Wait for the last stage to finish
101 threads[threads.length-1].join();
102 }
103 }

As previously, any handling of InterruptedException may be omitted. The code
above requires the locks to be fair, which is not possible with intrinsic Java locks
(synchronized), but instead of rewriting it using Java 5 locks we will assume that
intrinsic locks do provide fairness. It is fine to do it on the exam as long as you
explicitly say that you assume fairness.

17

Part 5: Concurrent Erlang i (8p)

Consider the following Erlang code that starts and registers a server.

1 start() ->
2 case whereis(myserver) of
3 undefined ->
4 Pid = spawn(myserver, init, []),
5 register(myserver, Pid),
6 {ok, Pid};
7 Pid when is_pid(Pid) ->
8 {error, already_started}
9 end.

The code is correct when run only by one process, but has problems when invoked
concurrently.

(3p) 5.1. Explain what is the problem with the code providing a concrete example.

The problem occurs when two processes run start() concurrently, and both of
them execute whereis(myserver) one after another. Then both of them receive
undefined from whereis(myserver), and choose the first clause of the case-
statement. Then both spawn a new process and try to register it, which ends with
one succeeding and one failing to do it. The failing process will crash with a badarg
exception, while the succeeding one will finish executing the function properly.
Furthermore, there will be an additional server process running, which will not be
registered.

Note that the failing process will throw an exception instead of returning {error,
already_started} as expected.

(5p) 5.2. Propose how to fix the problem, and implement your solution. Note that you do
not have access to the init/0 function, and cannot change it.

1 % Try to register the current process and
2 % send the result back to the parent process.
3 % If successful, run init(). If not, quit.
4 init_reg(Parent, Ref) ->
5 case (catch register(myserver, self())) of
6 {'EXIT', _} ->
7 Parent ! {Ref, {error, already_started}};
8 true ->
9 Parent ! {Ref, {ok, self()}},

10 init()
11 end.
12
13 start() ->
14 case whereis(myserver) of

18

15 undefined ->
16 Ref = make_ref(),
17 Parent = self(),
18 spawn(fun () -> init_reg(Parent, Ref) end),
19 receive {Ref, Res} -> Res end;
20 Pid when is_pid(Pid) ->
21 {error, already_started}
22 end.

To solve this problem you need to spawn a process, try to register it, and if registering
fails, terminate it. The easiest way to do it is to create a wrapper function that will
try to perform the registration in the newly-spawned process, and then send the
results back to the parent process.

Using make_ref() is not required for getting the full mark.

19

Part 6: Concurrent Erlang ii (16p)

In this assignment you have to implement a bounded buffer in Erlang, which provides
three operations.

1 -module(bbuffer).
2 -export([start/1, get/1, put/2]).

The start(N) operation creates a new buffer of size N and returns its handle. The blocking
get(Serv) operation takes a buffer handle and gets the the oldest element from the buffer,
or blocks if the buffer is empty. The blocking operation get(Serv, X) takes a buffer
handle and an element, and inserts it into the buffer, or blocks if there is no space in the
buffer.

(8p) 6.1. Implement the bbuffer Erlang module to provide the functionality described
above.

1 -module(bbuffer).
2
3 -export([start/1, get/1, put/2]).
4
5 start(N) ->
6 spawn(fun () -> loop ([], N) end).
7
8 % L is the queue, N is the number of free slots
9 loop(L, N) ->

10 receive
11 {get, P, Ref} when L /= [] ->
12 [X|Xs] = L,
13 P ! {get_reply, Ref, X},
14 loop(Xs, N + 1);
15 {put, P, Ref, Y} when N > 0 ->
16 P ! {put_reply, Ref},
17 loop(L ++ [Y], N - 1)
18 end.
19
20 get(B) ->
21 Ref = make_ref(),
22 B ! {get, self(), Ref},
23 receive
24 {get_reply, Ref, X} -> X
25 end.
26
27 put(B, X) ->
28 Ref = make_ref(),
29 B ! {put, self(), Ref, X},
30 receive

20

31 {put_reply, Ref} -> ok
32 end.

Using make_ref() is not required for getting the full mark.

(8p) 6.2. Int addition to the previous functionality, implement the operations unload/1 and
release/1. The unload(Serv) operation should force the buffer not to accept any
get/1 operations (they should block), but keep accepting the put/2 operations.
The unload/1 operation should block until the buffer is empty. Furthermore, the
unload/1 operation should have precedence over any blocked put/2 operations.
The release(Serv) operation should put the buffer back to its regular mode.

Note that the efficiency of the solution does not affect the grade; only correctness
matters.

1 -module(bbuffer).
2
3 -export([start/1, get/1, put/2, unload/1, release/1]).
4
5 start(N) ->
6 spawn(fun () -> loop_prio ([], N) end).
7
8 % L is the queue, N is the number of free slots
9 % First we want to check if there is an outstanding unload message

10 loop_prio(L, N) ->
11 receive
12 {unload, P, Ref} ->
13 loop_unload(L, N, {P, Ref})
14 after 0 -> loop(L, N)
15 end.
16
17 loop(L, N) ->
18 receive
19 {unload, P, Ref} ->
20 loop_unload(L, N, {P, Ref});
21 {get, P, Ref} when L /= [] ->
22 [X|Xs] = L,
23 P ! {get_reply, Ref, X},
24 loop_prio(Xs, N + 1);
25 {put, P, Ref, Y} when N > 0 ->
26 P ! {put_reply, Ref},
27 loop_prio(L ++ [Y], N - 1)
28 end.
29
30 % Get rid of all elements, then reply to the
31 % unload operation, then wait for a release

21

32 loop_unload([], N, {P, Ref}) ->
33 P ! {unload_reply, Ref},
34 receive
35 {release, P2, Ref2} ->
36 P2 ! {release_reply, Ref2},
37 loop_prio([], N)
38 end;
39 loop_unload([X|Xs], N, PR) ->
40 receive
41 {get, P, Ref} ->
42 P ! {get_reply, Ref, X},
43 loop_unload(Xs, N + 1, PR)
44 end.
45
46 get(B) ->
47 Ref = make_ref(),
48 B ! {get, self(), Ref},
49 receive
50 {get_reply, Ref, X} -> X
51 end.
52
53 put(B, X) ->
54 Ref = make_ref(),
55 B ! {put, self(), Ref, X},
56 receive
57 {put_reply, Ref} -> ok
58 end.
59
60 unload(B) ->
61 Ref = make_ref(),
62 B ! {unload, self(), Ref},
63 receive
64 {unload_reply, Ref} -> ok
65 end.
66
67 release(B) ->
68 Ref = make_ref(),
69 B ! {release, self(), Ref},
70 receive
71 {release_reply, Ref} -> ok
72 end.

We assume the release() will only take effect after the buffer is emptied, which
is a reasonable assumption.

We use the receive-after construct to receive the unload messages out-of-order.

22

Appendix

Builtin functions

Builtin functions (bifs) are functions provided by the Erlang VM. Here is a reference to
several of them.

register/2
register(Name, Pid) registers the process Pid under the name Name, which must
be an atom. If there is already a process registered under that name, the function
throws an exception. When the registered process terminates, it is automatically
unregistered.

The registered name can be used in the send operator to send a message to a
registered process (Name ! Message). Sending a message using a name under
which no process is registered throws an exception.

Example The following example assumes that there is no processes registered as
myproc and myproc2 before executing the statements, and that the first created
process keeps running when all other statements are executed.

1 1> register (myproc, spawn (fun init/0)).
2 true
3 2> register (myproc, spawn (fun init/0)).
4 ** exception error: bad argument
5 in function register/2
6 called as register(myproc,<0.42.0>)
7 3> myproc!{mymessage, 3}.
8 {mymessage, 3}
9 4> myproc2!{mymessage, 3}.

10 ** exception error: bad argument
11 in operator !/2
12 called as myproc2 ! {mymessage, 3}

whereis/1
register(Name) returns the pid of a registered process, or the atom undefined
if no process is registered under this name. unregistered.

Example The following example assumes that there are no processes registered
as myproc and myproc2 before executing the statements and that the first created
process is still running then the whereis/2 calls are executed.

1 1> register (myproc, spawn (fun init/0)).
2 true
3 2> whereis(myproc).
4 <0.48.0>
5 3> whereis(myproc2).
6 undefined

23

is_pid/1
is_pid(Arg) returns true if its argument is a pid, and false otherwise.

Example

1 1> P = spawn (fun init/0).
2 <0.46.0>
3 2> is_pid(P).
4 true
5 3> is_pid(something_else).
6 false

24

