
sample exam
Concurrent Programming tda383/dit390

Sample exam March 2016 Time: ? – ? Place: Johanneberg

Responsible Michał Pałka 0707966066

Result Available no later than ?-?-2016

Aids Max 2 books and max 4 sheets of notes on a4 paper (written or printed); additionally
a dictionary is allowed

Exam grade There are 6 parts (9 + 15 + 8 + 12 + 8 + 16 = 68 points); a total of at
least 24 points is needed to pass the exam. The grade for the exam is determined as
follows.

Chalmers Grade 3: 24–38 points, grade 4: 39–53 points, grade 5: 54–68 points
gu Godkänd: 24–53 points, Väl Godkänd: 54–68 points

Course grade To pass the course you need to pass each lab and the exam. The grade for
the whole course is based on the points obtained in the exam and the labs. More
specifically, the grade (exam + lab points) is determined as follows.

Chalmers Grade 3: 40–59 points, grade 4: 60–79 points, grade 5: 80–100 points
gu Godkänd: 40–79 points, Väl Godkänd: 80–100 points

Please read the following guidelines carefully:

• Please read through all questions before you start working on the answers

• Begin each part on a new sheet

• Write your anonymous code on each sheet

• Write clearly; unreadable == wrong!

• Solutions that use busy-waiting or polling will not be accepted, unless stated other-
wise

• Don’t forget to write comments with your code

• Multiple choice questions are awarded full points if exactly the correct answers are
selected, and zero points otherwise

• The exact syntax is not crucial; you will not be penalized for missing for example a
parenthesis or a comma

1

Part 1: General knowledge (9p)

Are the following Erlang functions tail-recursive?

(1p) 1.1. 1 sum([]) -> 0;
2 sum([X|Xs]) -> X + sum(Xs).

(A) Yes (B) No

(1p) 1.2. 1 rev([], Ac) -> Ac;
2 rev([X|Xs], Ac) -> rev(Xs, [X|Ac]).

(A) Yes (B) No

(1p) 1.3. 1 loop(N) ->
2 receive
3 {incr, Pid} ->
4 Pid ! {incr_reply, N},
5 loop(N + 1);
6 {reset, Pid} ->
7 Pid ! reset_reply,
8 loop(0)
9 end.

(A) Yes (B) No

(1p) 1.4. 1 loop(N) ->
2 io:format("loop iteration~n"),
3 receive
4 {add, Pid, M} ->
5 Pid ! add_reply,
6 loop(N + M);
7 {read, Pid} ->
8 Pid ! {read_reply, N},
9 loop(N)

10 end.

(A) Yes (B) No

2

Do the following snippets of Java code perform busy-waiting? Assume that the variables s1
and free are not referenced by any other part of the code, and that critical_section()
and non_critical_section() always change the state of the system (they do something
meaningful).

(1p) 1.5. 1 Semaphore s1;
2 boolean free = true;
3 // ...
4 // Code run by threads 1 and 2
5 while(true) {
6 non_critical_section();
7 bool crit = false;
8 do {
9 s1.acquire();

10 try {
11 crit = free;
12 free = false;
13 } finally {s1.release()}
14 } while (!crit);
15 critical_section();
16 s1.acquire();
17 try { free = true;
18 } finally {s1.release()}
19 }

(A) Yes (B) No

(1p) 1.6. 1 Semaphore s1;
2 boolean free = true;
3 // ...
4 // Code run by threads 1 and 2
5 while(true) {
6 non_critical_section();
7 bool crit = false;
8 s1.acquire();
9 try {

10 crit = free;
11 free = false;
12 critical_section();
13 } finally {s1.release()}
14 }

(A) Yes (B) No

(3p) 1.7. Modern versions of Java provide two variants of monitors: (a) one based on the
synchronized keyword and the wait(), notify() and notifyAll() methods;
and (b) one based on the ReentrantLock class (Java 5 monitors). List at least

3

three important differences (there are more) between them from the point of view
of the user of these mechanisms.

4

Part 2: State spaces (15p)

Here is yet another algorithm to solve the critical section problem, built from atomic if
statements (p2, q2 and p5, q5). The test of the condition following if, and the correspond-
ing then or else action, are both carried out in one step, which the other process cannot
interrupt.

integer S := 0

p0 loop forever
p1 non-critical section
p2 if even(S) then S := 4

else S := 5
p3 await (S != 1 && S != 5)
p4 critical section
p5 if S >= 4 then S := S-4

else skip

q0 loop forever
q1 non-critical section
q2 if S < 4 then S := 3

else S := 7
q3 await (S != 6 && S != 7)
q4 critical section
q5 if odd(S) then S := S-1

else skip

Below is part of the state transition table for an abbreviated version of this program,
skipping p1, p4, q1 and q4 (the critical and non-critical sections). For example, in line 5
of the table below p3 transitions directly to p5, skipping p4. A state transition table is
a tabular version of a state diagram. The left-hand column lists the states. The middle
column gives the next state if p next executes a step, and the right-hand column gives
the next state if q next executes a step. In many states both p or q are free to execute the
next step, and either may do so. But in some states, such as 5 below, one or other of the
processes may be blocked. There are 10 states in total.

State = (pi, qi, Svalue) next state if p moves next state if q moves

1 (p2, q2, 0) (p3, q2, 4) (p2, q3, 3)
2 (p3, q2, 4) (p5, q2, 4) (p3, q3, 7)
3 ? ? ?
4 ? ? ?
5 (p3, q3, 7) (p5, q3, 7) no move
6 ? ? ?
7 ? ? ?
8 ? ? ?
9 ? ? ?
10 (p2, q2, 2) (p3, q2, 4) (p2, q3, 3)

Complete the state transition table (correctness of the table will not be assessed).
Are the following states reachable in the algorithm above?

(1p) 2.1. (p2, q3, 4) (A) Yes (B) No

(1p) 2.2. (p3, q5, 5) (A) Yes (B) No

5

(1p) 2.3. (p3, q5, 4) (A) Yes (B) No

(1p) 2.4. (p5, q3, 7) (A) Yes (B) No

(3p) 2.5. Prove from your state transition table that the program ensures mutual exclusion.

(2p) 2.6. State formally the property that the program does not deadlock.

(3p) 2.7. Prove from your state transition table that the program does not deadlock.

Do the following invariants hold? The notation p2, p3, p4, etc. denotes the condition that
process p is currently executing line 2, 3, 4, etc.

(1p) 2.8. q3 Ñ pS “ 5 _ S “ 7q (A) Yes (B) No

(1p) 2.9. pp3 ^ q3q Ñ pS “ 5 _ S “ 7q (A) Yes (B) No

(1p) 2.10. pp3 ^ q3q Ñ S “ 7 (A) Yes (B) No

6

Part 3: Concurrent Java i (8p)

The Regional Development Bank continues its growth, which also exposed a performance
problem with its it system. Currently, the bank uses the following Java class for holding
its accounts.

1 class Accounts {
2 Lock l = new ReentrantLock();
3
4 Account[] store; // Map account id to Account object
5 // ...
6
7 // amount is always non-negative, source and target are always
8 // valid account ids
9 public boolean transfer(int source, int target, int amount) {

10 l.lock()
11 try {
12 int tmp = store[source].getBalance();
13 if (tmp < amount) return false; // Transfer failed
14 store[source].updateBalance(tmp - amount);
15 store[target].updateBalance(store[target].getBalance() + amount);
16 } finally {l.unlock() }
17 return true;
18 }
19 }

The Account class is defined as follows.

1 class Account {
2 int id;
3 int balance;
4 // ...
5 int getBalance () {
6 return balance;
7 }
8 void updateBalance (int newB) {
9 balance = newB;

10 }
11 }

A consultant was called in, and within two days he diagnosed the problem: There is too
much contention on the Accounts object, which causes the threads to wait for too long time.
Within two more days, he had a proposal on how to solve the problem. The proposed
solution avoids contention by locking individual accounts instead of locking the whole
table. Below are the new versions of the Accounts and Account classes.

1 class Accounts {
2 Account[] store; // Map account id to Account object

7

3 // ...
4
5 // amount is always non-negative, source and target are always
6 // valid account ids
7 public boolean transfer(int source, int target, int amount) {
8 store[source].l.lock()
9 try {

10 store[target].l.lock()
11 try {
12 int tmp = store[source].getBalance();
13 if (tmp < amount) return false; // Transfer failed
14 store[source].updateBalance(tmp - amount);
15 store[target].updateBalance(store[target].getBalance()
16 + amount);
17 } finally {store[target].l.unlock() }
18 } finally {store[source].l.unlock() }
19 return true;
20 }
21 }

1 class Account {
2 // Account is used only internally, so public here is OK
3 public Lock l = new ReentrantLock();
4 int id;
5 int balance;
6 // ...
7 int getBalance () {
8 return balance;
9 }

10 void updateBalance (int newB) {
11 balance = newB;
12 }
13 }

The plan is to move the changes to production nextweek. However, looking at the proposed
update, you see a problem that can have serious consequences for the bank.

(4p) 3.1. Explain what can go wrong with the new code. For a full mark, you need to provide
a concrete scenario, which demonstrates the problem. You may assume that you
can populate the store table with any account data you wish.

(4p) 3.2. Propose how to fix the problem that you identified, and implement your proposal.

8

Part 4: Concurrent Java ii (12p)

In this assignment you have to implement a pipeline of processes in Java, which transforms
a stream of values by applying a number of functions in a sequence to each value.

f1 f2 . . . fn
input output

The pipeline should be implemented using the following class.

1 class Pipeline {
2 // Initialize the pipeline
3 public Pipeline(Stage[] stages) {}
4 // Start the threads
5 public void run () throws InterruptedException {}
6 // Feed one more input to the pipeline
7 public void feed(T input) throws InterruptedException {}
8 }

The pipeline is constructed based on an array of stages (described below). The run()
method should start a thread for each stage. The feed() method should feed one more
input to a running pipeline, and could be called by different threads concurrently. The
type T is an arbitrary type. The input should get processed by each of the stages in turn.
If a stage is busy processing a previous input, the input should be buffered in a one-slot
buffer. Thus, the feed() method may block. There is no way of getting the results from
the pipeline. Instead, the last stage should perform a side-effect such as printing the
results. Pipeline stages are specified by defining subclasses of the following class.

1 abstract class Stage {
2 // This class is unsynchronized
3 abstract T compute (T x);
4 }

Example

1 class T { public int x; public T(int y) { x = y; } }
2
3 class Stage1 {
4 T compute (T a) {
5 return T(a.x + 2);
6 }
7 }
8 class Stage2 {
9 T compute (T a) {

10 return T(a.x * 3);
11 }
12 }

9

13 class Stage3 {
14 T compute (T a) {
15 System.out.println("Got a.x = " + a.x);
16 return a;
17 }
18 }
19
20 // ...
21 Stage[] stages = { new Stage1(), new Stage2(), new Stage3() };
22 Pipeline p = new Pipeline (stages);
23 p.run();
24 p.feed(new T(2));
25 p.feed(new T(4));
26 p.feed(new T(3));
27 // ...

The code above should print the following three lines after some time.

Got T.x = 12
Got T.x = 18
Got T.x = 15

(8p) 4.1. Your job is to implement the Pipeline class to provide the functionality described
above.

(4p) 4.2. Additionally, implement the void join() method in the Pipeline class, which
would terminate all pipeline threads after they have finished processing all the
outstanding elements. The method should block until all the threads terminate.

10

Part 5: Concurrent Erlang i (8p)

Consider the following Erlang code that starts and registers a server.

1 start() ->
2 case whereis(myserver) of
3 undefined ->
4 Pid = spawn(myserver, init, []),
5 register(myserver, Pid),
6 {ok, Pid};
7 Pid when is_pid(Pid) ->
8 {error, already_started}
9 end.

The code is correct when run only by one process, but has problems when invoked
concurrently.

(3p) 5.1. Explain what is the problem with the code providing a concrete example.

(5p) 5.2. Propose how to fix the problem, and implement your solution. Note that you do
not have access to the init/0 function, and cannot change it.

11

Part 6: Concurrent Erlang ii (16p)

In this assignment you have to implement a bounded buffer in Erlang, which provides
three operations.

1 -module(bbuffer).
2 -export([start/1, get/1, put/2]).

The start(N) operation creates a new buffer of size N and returns its handle. The blocking
get(Serv) operation takes a buffer handle and gets the the oldest element from the buffer,
or blocks if the buffer is empty. The blocking operation get(Serv, X) takes a buffer
handle and an element, and inserts it into the buffer, or blocks if there is no space in the
buffer.

(8p) 6.1. Implement the bbuffer Erlang module to provide the functionality described
above.

(8p) 6.2. Int addition to the previous functionality, implement the operations unload/1 and
release/1. The unload(Serv) operation should force the buffer not to accept any
get/1 operations (they should block), but keep accepting the put/2 operations.
The unload/1 operation should block until the buffer is empty. Furthermore, the
unload/1 operation should have precedence over any blocked put/2 operations.
The release(Serv) operation should put the buffer back to its regular mode.

Note that the efficiency of the solution does not affect the grade; only correctness
matters.

12

Appendix

Builtin functions

Builtin functions (bifs) are functions provided by the Erlang VM. Here is a reference to
several of them.

register/2
register(Name, Pid) registers the process Pid under the name Name, which must
be an atom. If there is already a process registered under that name, the function
throws an exception. When the registered process terminates, it is automatically
unregistered.

The registered name can be used in the send operator to send a message to a
registered process (Name ! Message). Sending a message using a name under
which no process is registered throws an exception.

Example The following example assumes that there is no processes registered as
myproc and myproc2 before executing the statements, and that the first created
process keeps running when all other statements are executed.

1 1> register (myproc, spawn (fun init/0)).
2 true
3 2> register (myproc, spawn (fun init/0)).
4 ** exception error: bad argument
5 in function register/2
6 called as register(myproc,<0.42.0>)
7 3> myproc!{mymessage, 3}.
8 {mymessage, 3}
9 4> myproc2!{mymessage, 3}.

10 ** exception error: bad argument
11 in operator !/2
12 called as myproc2 ! {mymessage, 3}

whereis/1
register(Name) returns the pid of a registered process, or the atom undefined
if no process is registered under this name. unregistered.

Example The following example assumes that there are no processes registered
as myproc and myproc2 before executing the statements and that the first created
process is still running then the whereis/2 calls are executed.

1 1> register (myproc, spawn (fun init/0)).
2 true
3 2> whereis(myproc).
4 <0.48.0>
5 3> whereis(myproc2).
6 undefined

13

is_pid/1
is_pid(Arg) returns true if its argument is a pid, and false otherwise.

Example

1 1> P = spawn (fun init/0).
2 <0.46.0>
3 2> is_pid(P).
4 true
5 3> is_pid(something_else).
6 false

14

