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Overview of today’s lecture 
l A simple most basic real-time lighting 

model 
–  Also, OpenGL’s old fixed pipeline lighting model 

l Fog 
l Gamma correction 
l Transparency and alpha 
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Compute lighting at vertices, 
then interpolate over triangle 

l  How compute lighting? 
l  We  could set colors per vertex manually 
l  For a little more realism, compute lighting from 

–  Light sources 
–  Material properties 
–  Geometrical relationships 

light 

Geometry 

blue 

red green 

Rasterizer 
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Material: 
• Ambient   (r,g,b,a)  

• Diffuse   (r,g,b,a) 

• Specular   (r,g,b,a) 

• Emission   (r,g,b,a)  =”självlysande färg” 

Light: 
• Ambient   (r,g,b,a)  

• Diffuse   (r,g,b,a) 

• Specular   (r,g,b,a) 

 DIFFUSE Base color 
SPECULAR Highlight Color 
AMBIENT Low-light Color 
EMISSION Glow Color 
SHININESS Surface Smoothness 

A basic lighting model 
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Ambient component: iamb 

l Ad-hoc – tries to account for light coming 
from other surfaces 

l  Just add a constant color: 

ambambamb smi ⊗=

i.e., (ir , ig , ib , ia) = (mr , mg , mb , ma)  (lr , lg , lb , la)   

Modified  by Ulf Assarsson, 2006 

Old: glLightModelfv(GL_LIGHT_MODEL_AMBIENT, global_ambient) 
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Diffuse component : idiff 

l  i=iamb+idiff+ispec 

l Diffuse is Lambert’s law: φcos=⋅= lndiffi

l Photons are scattered equally in all 
directions 

diffdiffdiff smlni ⊗⋅= )(
n and l are 
assumed being 
unit vectors 



Lambertian Surfaces 
•  Perfectly diffuse reflector 
•  Light scattered equally in all directions 

Highly reflective 
surface (specular) 

Fully diffuse surface 
(Lambertian) 
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Lighting 
Specular component : ispec 

l Diffuse is dull (left) 
l Specular: simulates a highlight 
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Specular component: Phong 
l Phong specular highlight model 
l Reflect l around n: 

l)n2(nlr ⋅+−=

n 

l r 

-l 
nln )( ⋅

ln ⋅

shishi mm
speci )(cos)( ρ=⋅= vr

€ 

ispec = ((n⋅ l) < 0) ?  0 :  max(0,(r⋅ v))mshimspec ⊗ sspec
l Next: Blinns highlight formula: (n.h)m 

n must be unit 
vector 



Halfway Vector 

Blinn proposed replacing v·r by n·h where 
h = (l+v)/|l + v| 
(l+v)/2 is halfway between l and v 
If n, l, and v are coplanar: 
      ψ = φ/2

Must then adjust exponent 
so that (n·h)e’ ≈ (r·v)e 

(e’ ≈ 4e) 



Efficiency 
The Blinn rendering model is less efficient than pure Phong shading in most cases, since it 
contains a square root calculation. While the original Phong model only needs a simple 
vector reflection, this modified form takes more into consideration. However, as many CPUs 
and GPUs contain single and double precision square root functions (as standard features) 
and other instructions that can be used to speed up rendering -- the time penalty for this kind 
of shader will not be noticed in most implementations. 
However, Blinn-Phong will be faster in the case where the viewer and light are treated to be 
at infinity. This is the case for directional lights. In this case, the half-angle vector is 
independent of position and surface curvature. It can be computed once for each light and 
then used for the entire frame, or indeed while light and viewpoint remain in the same 
relative position. The same is not true with Phong's original reflected light vector which 
depends on the surface curvature and must be recalculated for each pixel of the image (or for 
each vertex of the model in the case of vertex lighting). 
In most cases where lights are not treated to be at infinity, for instance when using point 
lights, the original Phong model will be faster. 
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Lighting 
i=iamb+idiff+ispec 
 

l This is just a hack! 
l Has little to do with how reality works! 

+ + 

= 
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Additions to the lighting equation 
l Depends on distance: 1/(a+bt+ct  ) 
l Can have more lights: just sum their 

respective contributions 
l Different light types: 

2 



Clarifications 
•  Energy is emitted at equal proportions in all 

directions from a spherical radiator. Due to 
energy conservation, the intensity is 
proportional to the spherical area at distance 
r from the light center.  

•  A = 4πr2 
•  Thus, the intensity scales 

~ 1/r2 

14 

r 
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Shading 
l Shading: do lighting (at e.g. vertices) and 

determine pixel’s colors from these 
l Three common types of shading: 

–  Flat, Goraud, and Phong 
–  Old: glShadeModel(GL_FLAT / GL_SMOOTH); 
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Shading 
l Three common types of shading: 

–  Flat, Goraud, and Phong 
l  In standard Gouraud shading the lighting is computed per triangle vertex 

and for each pixel, the color is interpolated from the colors at the 
vertices. 

l  In Phong Shading the lighting is not  computed per vertex. Instead the 
normal is interpolated per pixel from the normals defined at the vertices 
and full lighting is computed per pixel using this normal. This is of course 
more expensive but looks better.  

  Flat Gouraud Phong 



// Vertex Shader 
#version 130 
 
in  vec3 vertex; 
in vec3 normal; 
uniform  vec4 mtrlAmb, mtrlDiffuse, mtrlSpec, mtrlEmission; 
uniform  vec4 lightAmb, lightDiffuse, lightSpec, lightEmission; 
uniform float shininess; 
uniform mat4 modelViewProjectionMatrix, normalMatrix, modelViewMatrix;  
uniform vec4 lightPos; // in view space 
out vec3 outColor; 
 
void main()  
{ 
        gl_Position = modelViewProjectionMatrix*vec4(vertex,1); 
        // ambient  
        outColor = lightAmb * mtrlAmb;  
 
        // diffuse 
        vertex = vec3(modelViewMatrix * vec4(vertex,1)); 
        normal = normalize(normalMatrix * normal); 
        vec3 lightDirection = normalize(lightPos – vertex.xyz); 
        float intensity=max(0, dot(normal, lightDirection) 
        outColor += lightDiffuse*mtrlDiffuse*intensity; 
 
        // specular 
        vec3 viewVec = -vertex.xyz; // because we are in view space 
        vec3 reflVec = -lightDirection + normal*(2*dot(normal*lightDirection)) 
        intensity=pow(max(0,(dot(reflVec, viewVec)), shininess)); 
        outColor += lightSpec * mtrlSpec * max(0,intensity); 
} 

Gouraud Shading Code 
// Fragment Shader: 
#version 130 
in  vec3 outColor; 
out vec4 fragColor; 
 
void main()  
{ 

 fragColor = vec4(outColor,1); 
} 

€ 

ispec = ((n⋅ l) < 0) ?  0 :  max(0,(r⋅ v))mshimspec ⊗ sspec

l)n2(nlr ⋅+−=

For one light source 



// Fragment Shader: 
#version 130 
in  vec3 outColor, lightDirection, N, pos; 
in vec3 viewVec; 
uniform  vec3 mtrlDiffuse, mtrlSpec, mtrlEmission; 
uniform  vec3 lightDiffuse, lightSpec, lightEmission; 
uniform float shininess; 
out vec4 fragColor; 
 
void main()  
{ 
    N = normalize(N); // renormalize due to the interpolation 
    // diffuse 
    float intensity=max(0, dot(N, lightDirection) 
    outColor += lightDiffuse*mtrlDiffuse*intensity; 
 
    // specular 
    vec3 reflVec = -lightDirection + N*(2*dot(N*lightDirection)); 
    intensity=pow(max(0,(dot(reflVec, viewVec)), shininess)); 
    outColor += lightSpec * mtrlSpec * max(0,intensity); 
    fragColor = vec4(outColor,1); 
} 

// Vertex Shader 
#version 130 
 
in  vec3 vertex; 
in vec3 normal; 
uniform  vec3 mtrlAmb; 
uniform  vec3 lightAmb; 
uniform vec4 lightPos; 
uniform mat4 modelViewProjectionMatrix; 
uniform mat4 normalMatrix;  
uniform mat4 modelViewMatrix; 
out vec3 outColor; 
out vec3 N; 
out vec3 viewVec; 
out vec3 lightDirection; 
 
void main()  
{ 
        gl_Position = modelViewProjectionMatrix* 

 vec4(vertex,1); 
 
        // ambient  
        outColor = lightAmb * mtrlAmb;  
 
        N= normalize(normalMatrix * normal); 
        lightDirection = normalize(lightPos – vertex.xyz); 
        viewVec=-vec3(modelViewMatrix*vec4(vertex,1)); 
} 

Phong Shading Code For one light source 

€ 

ispec = ((n⋅ l) < 0) ?  0 :  max(0,(r⋅ v))mshimspec ⊗ sspec
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Fog 
l Simple atmospheric effect 

–  A little better realism  
–  Help in determining distances 
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l Color of fog:         color of surface:  fc sc

€ 

c p = fcs + (1− f )c f       f ∈[0,1]
l  How to compute f ? 
l  3 ways: linear, exponential, exponential-squared 
l  Linear: 

startend

pend

zz
zz

f
−

−
=



Fog 
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The equation for GL_EXP fog is 
f = e(-(density · x)) 

Rationale: 
Constant intensity decrease at 
greater distance due to out 
scattering and absorption. 
 
 
 
 
 
 
The equation for GL_EXP2 fog 
is f = e (–(density · c))^2 

dI = −CIds

I(s) = I(0)e−density*s
ds 

I(0) I(s) 
s 
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Fog example 

l  Often just a matter of  
–  Choosing fog color 
–  Choosing fog model 
–  Old OpenGL – just turn it on. New OpenGL – program it 

yourself in the fragment shader 



Fog in up-direction 
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Gamma correction 

l  If input to gun is 0.5, then you don’t get 
0.5 as output in intensity 

l  Instead, gamma correct that signal:     
gives linear relationship 
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Gamma correction 

l  I=intensity on screen 
l V=input voltage (electron gun) 
l  a,ε, and γ  are constants for each system 
l Common gamma values: 2.2-2.6 
l Assuming ε=0, gamma correction is: 
 

γε )( += VaI

)/1( γ
icc =



Why is it important to care about 
gamma correction? 
l Portability across platforms 
l  Image quality 

–  Texturing 
–  Anti-aliasing 

l One solution is to put gamma correction 
in hardware… 

l  sRGB asumes gamma=2.2  
l  Can use EXT_framebuffer_sRGB  to render with 

gamma correction directly to frame buffer 



Gamma correction today 
l Standard is 2.2 
l Happens to give more efficient color 

space when compressing intensity from 
32-bit floats to 8-bits. Thus, still 
somewhat motivated. 

Gamma of 2.2 

On most displays (those with gamma of about 2.2), one can observe that the linear 
intensity output (bottom) has a large jump in perceived brightness between the 
intensity values 0.0 and 0.1, while the steps at the higher end of the scale are hardly 
perceptible.  A linear input that has a nonlinearly-increasing intensity (upper), will 
show much more even steps in perceived brightness. 

better distribution for 
humans 

Truth 
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Transparency and alpha 
l Transparency 

–  Very simple in real-time contexts 

l The tool: alpha blending (mix two colors) 
l Alpha (α) is another component in the 

frame buffer, or material for a triangle 
–  Represents the opacity  
–  1.0 is totally opaque 
–  0.0 is totally transparent 

l The over operator: 
 

dso ccc )1( αα −+=
Rendered object 
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Transparency 
l Need to sort the transparent objects 

–  Render back to front (blending is order dep.) 
l  See next slide… 

l  Lots of different other blending modes 
l Can store RGBα in textures as well 

So the texels with α=0.0 
do not not hide the 
objects behind 

dso ccc )1( αα −+=
Rendered object Background 
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Transparency 
l Need to sort the transparent objects 

–  First, render all non-transparent triangles as 
usual.  

–  Then, sort all transparent triangles and 
render back-to-front with blending enabled.  
(and using standard depth test) 
l  The reason is to avoid problems with the depth test 

and because the blending operation (i.e., over 
operator) is order dependent. 
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l  Used for 
–  Transparency 

l  glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)  

–  Effects (shadows, reflections) 
–  Complex materials 

l  Quake3 used up to 10 rendering passes, blending toghether 
contributions such as: 

–  Diffuse lighting (for hard shadows) 
–  Bump maps 
–  Base texture 
–  Specular and emissive lighting 
–  Volumetric/atmospheric effects 

Today, this would typically be done in one render pass by combining the 
effects in the vertex+fragment shader. 

–  Enable with glEnable(GL_BLEND) 

Blending  
dso ccc )1( αα −+=


