
Shading

Slides by Ulf Assarsson and Tomas
Akenine-Möller
Department of Computer Engineering
Chalmers University of Technology

Tomas Akenine-Mőller © 2002

Overview of today’s lecture
l A simple most basic real-time lighting

model
–  Also, OpenGL’s old fixed pipeline lighting model

l Fog
l Gamma correction
l Transparency and alpha

Tomas Akenine-Mőller © 2002

Compute lighting at vertices,
then interpolate over triangle

l  How compute lighting?
l  We could set colors per vertex manually
l  For a little more realism, compute lighting from

–  Light sources
–  Material properties
–  Geometrical relationships

light

Geometry

blue

red green

Rasterizer

Tomas Akenine-Mőller © 2002 Added by Ulf Assarsson, 2004

Material:
• Ambient (r,g,b,a)

• Diffuse (r,g,b,a)

• Specular (r,g,b,a)

• Emission (r,g,b,a) =”självlysande färg”

Light:
• Ambient (r,g,b,a)

• Diffuse (r,g,b,a)

• Specular (r,g,b,a)

 DIFFUSE Base color
SPECULAR Highlight Color
AMBIENT Low-light Color
EMISSION Glow Color
SHININESS Surface Smoothness

A basic lighting model

Tomas Akenine-Mőller © 2002

Ambient component: iamb

l Ad-hoc – tries to account for light coming
from other surfaces

l  Just add a constant color:

ambambamb smi ⊗=

i.e., (ir , ig , ib , ia) = (mr , mg , mb , ma) (lr , lg , lb , la)

Modified by Ulf Assarsson, 2006

Old: glLightModelfv(GL_LIGHT_MODEL_AMBIENT, global_ambient)

Tomas Akenine-Mőller © 2002

Diffuse component : idiff

l  i=iamb+idiff+ispec

l Diffuse is Lambert’s law: φcos=⋅= lndiffi

l Photons are scattered equally in all
directions

diffdiffdiff smlni ⊗⋅=)(
n and l are
assumed being
unit vectors

Lambertian Surfaces
•  Perfectly diffuse reflector
•  Light scattered equally in all directions

Highly reflective
surface (specular)

Fully diffuse surface
(Lambertian)

Tomas Akenine-Mőller © 2002

Lighting
Specular component : ispec

l Diffuse is dull (left)
l Specular: simulates a highlight

Tomas Akenine-Mőller © 2002

Specular component: Phong
l Phong specular highlight model
l Reflect l around n:

l)n2(nlr ⋅+−=

n

l r

-l
nln)(⋅

ln ⋅

shishi mm
speci)(cos)(ρ=⋅= vr

€

ispec = ((n⋅ l) < 0) ? 0 : max(0,(r⋅ v))mshimspec ⊗ sspec
l Next: Blinns highlight formula: (n.h)m

n must be unit
vector

Halfway Vector

Blinn proposed replacing v·r by n·h where
h = (l+v)/|l + v|
(l+v)/2 is halfway between l and v
If n, l, and v are coplanar:
   ψ = φ/2

Must then adjust exponent
so that (n·h)e’ ≈ (r·v)e

(e’ ≈ 4e)

Efficiency
The Blinn rendering model is less efficient than pure Phong shading in most cases, since it
contains a square root calculation. While the original Phong model only needs a simple
vector reflection, this modified form takes more into consideration. However, as many CPUs
and GPUs contain single and double precision square root functions (as standard features)
and other instructions that can be used to speed up rendering -- the time penalty for this kind
of shader will not be noticed in most implementations.
However, Blinn-Phong will be faster in the case where the viewer and light are treated to be
at infinity. This is the case for directional lights. In this case, the half-angle vector is
independent of position and surface curvature. It can be computed once for each light and
then used for the entire frame, or indeed while light and viewpoint remain in the same
relative position. The same is not true with Phong's original reflected light vector which
depends on the surface curvature and must be recalculated for each pixel of the image (or for
each vertex of the model in the case of vertex lighting).
In most cases where lights are not treated to be at infinity, for instance when using point
lights, the original Phong model will be faster.

Tomas Akenine-Mőller © 2002

Lighting
i=iamb+idiff+ispec

l This is just a hack!
l Has little to do with how reality works!

+ +

=

Tomas Akenine-Mőller © 2002

Additions to the lighting equation
l Depends on distance: 1/(a+bt+ct)
l Can have more lights: just sum their

respective contributions
l Different light types:

2

Clarifications
•  Energy is emitted at equal proportions in all

directions from a spherical radiator. Due to
energy conservation, the intensity is
proportional to the spherical area at distance
r from the light center.

•  A = 4πr2
•  Thus, the intensity scales

~ 1/r2

14

r

Tomas Akenine-Mőller © 2002

Shading
l Shading: do lighting (at e.g. vertices) and

determine pixel’s colors from these
l Three common types of shading:

–  Flat, Goraud, and Phong
–  Old: glShadeModel(GL_FLAT / GL_SMOOTH);

Tomas Akenine-Mőller © 2002

Shading
l Three common types of shading:

–  Flat, Goraud, and Phong
l  In standard Gouraud shading the lighting is computed per triangle vertex

and for each pixel, the color is interpolated from the colors at the
vertices.

l  In Phong Shading the lighting is not computed per vertex. Instead the
normal is interpolated per pixel from the normals defined at the vertices
and full lighting is computed per pixel using this normal. This is of course
more expensive but looks better.

 Flat Gouraud Phong

// Vertex Shader
#version 130

in vec3 vertex;
in vec3 normal;
uniform vec4 mtrlAmb, mtrlDiffuse, mtrlSpec, mtrlEmission;
uniform vec4 lightAmb, lightDiffuse, lightSpec, lightEmission;
uniform float shininess;
uniform mat4 modelViewProjectionMatrix, normalMatrix, modelViewMatrix;
uniform vec4 lightPos; // in view space
out vec3 outColor;

void main()
{
 gl_Position = modelViewProjectionMatrix*vec4(vertex,1);
 // ambient
 outColor = lightAmb * mtrlAmb;

 // diffuse
 vertex = vec3(modelViewMatrix * vec4(vertex,1));
 normal = normalize(normalMatrix * normal);
 vec3 lightDirection = normalize(lightPos – vertex.xyz);
 float intensity=max(0, dot(normal, lightDirection)
 outColor += lightDiffuse*mtrlDiffuse*intensity;

 // specular
 vec3 viewVec = -vertex.xyz; // because we are in view space
 vec3 reflVec = -lightDirection + normal*(2*dot(normal*lightDirection))
 intensity=pow(max(0,(dot(reflVec, viewVec)), shininess));
 outColor += lightSpec * mtrlSpec * max(0,intensity);
}

Gouraud Shading Code
// Fragment Shader:
#version 130
in vec3 outColor;
out vec4 fragColor;

void main()
{

 fragColor = vec4(outColor,1);
}

€

ispec = ((n⋅ l) < 0) ? 0 : max(0,(r⋅ v))mshimspec ⊗ sspec

l)n2(nlr ⋅+−=

For one light source

// Fragment Shader:
#version 130
in vec3 outColor, lightDirection, N, pos;
in vec3 viewVec;
uniform vec3 mtrlDiffuse, mtrlSpec, mtrlEmission;
uniform vec3 lightDiffuse, lightSpec, lightEmission;
uniform float shininess;
out vec4 fragColor;

void main()
{
 N = normalize(N); // renormalize due to the interpolation
 // diffuse
 float intensity=max(0, dot(N, lightDirection)
 outColor += lightDiffuse*mtrlDiffuse*intensity;

 // specular
 vec3 reflVec = -lightDirection + N*(2*dot(N*lightDirection));
 intensity=pow(max(0,(dot(reflVec, viewVec)), shininess));
 outColor += lightSpec * mtrlSpec * max(0,intensity);
 fragColor = vec4(outColor,1);
}

// Vertex Shader
#version 130

in vec3 vertex;
in vec3 normal;
uniform vec3 mtrlAmb;
uniform vec3 lightAmb;
uniform vec4 lightPos;
uniform mat4 modelViewProjectionMatrix;
uniform mat4 normalMatrix;
uniform mat4 modelViewMatrix;
out vec3 outColor;
out vec3 N;
out vec3 viewVec;
out vec3 lightDirection;

void main()
{
 gl_Position = modelViewProjectionMatrix*

 vec4(vertex,1);

 // ambient
 outColor = lightAmb * mtrlAmb;

 N= normalize(normalMatrix * normal);
 lightDirection = normalize(lightPos – vertex.xyz);
 viewVec=-vec3(modelViewMatrix*vec4(vertex,1));
}

Phong Shading Code For one light source

€

ispec = ((n⋅ l) < 0) ? 0 : max(0,(r⋅ v))mshimspec ⊗ sspec

Tomas Akenine-Mőller © 2002

Fog
l Simple atmospheric effect

–  A little better realism
–  Help in determining distances

Tomas Akenine-Mőller © 2002

l Color of fog: color of surface: fc sc

€

c p = fcs + (1− f)c f f ∈[0,1]
l  How to compute f ?
l  3 ways: linear, exponential, exponential-squared
l  Linear:

startend

pend

zz
zz

f
−

−
=

Fog

Tomas Akenine-Mőller © 2002

The equation for GL_EXP fog is
f = e(-(density · x))

Rationale:
Constant intensity decrease at
greater distance due to out
scattering and absorption.

The equation for GL_EXP2 fog
is f = e (–(density · c))^2

dI = −CIds

I(s) = I(0)e−density*s
ds

I(0) I(s)
s

Tomas Akenine-Mőller © 2002

Fog example

l  Often just a matter of
–  Choosing fog color
–  Choosing fog model
–  Old OpenGL – just turn it on. New OpenGL – program it

yourself in the fragment shader

Fog in up-direction

Tomas Akenine-Mőller © 2002

Tomas Akenine-Mőller © 2002

Gamma correction

l  If input to gun is 0.5, then you don’t get
0.5 as output in intensity

l  Instead, gamma correct that signal:
gives linear relationship

Tomas Akenine-Mőller © 2002

Gamma correction

l  I=intensity on screen
l V=input voltage (electron gun)
l  a,ε, and γ are constants for each system
l Common gamma values: 2.2-2.6
l Assuming ε=0, gamma correction is:

γε)(+= VaI

)/1(γ
icc =

Why is it important to care about
gamma correction?
l Portability across platforms
l  Image quality

–  Texturing
–  Anti-aliasing

l One solution is to put gamma correction
in hardware…

l  sRGB asumes gamma=2.2
l  Can use EXT_framebuffer_sRGB to render with

gamma correction directly to frame buffer

Gamma correction today
l Standard is 2.2
l Happens to give more efficient color

space when compressing intensity from
32-bit floats to 8-bits. Thus, still
somewhat motivated.

Gamma of 2.2

On most displays (those with gamma of about 2.2), one can observe that the linear
intensity output (bottom) has a large jump in perceived brightness between the
intensity values 0.0 and 0.1, while the steps at the higher end of the scale are hardly
perceptible. A linear input that has a nonlinearly-increasing intensity (upper), will
show much more even steps in perceived brightness.

better distribution for
humans

Truth

Tomas Akenine-Mőller © 2002

Transparency and alpha
l Transparency

–  Very simple in real-time contexts

l The tool: alpha blending (mix two colors)
l Alpha (α) is another component in the

frame buffer, or material for a triangle
–  Represents the opacity
–  1.0 is totally opaque
–  0.0 is totally transparent

l The over operator:

dso ccc)1(αα −+=
Rendered object

Ulf Assarsson© 2007

Transparency
l Need to sort the transparent objects

–  Render back to front (blending is order dep.)
l  See next slide…

l  Lots of different other blending modes
l Can store RGBα in textures as well

So the texels with α=0.0
do not not hide the
objects behind

dso ccc)1(αα −+=
Rendered object Background

Tomas Akenine-Mőller © 2002

Transparency
l Need to sort the transparent objects

–  First, render all non-transparent triangles as
usual.

–  Then, sort all transparent triangles and
render back-to-front with blending enabled.
(and using standard depth test)
l  The reason is to avoid problems with the depth test

and because the blending operation (i.e., over
operator) is order dependent.

Ulf Assarsson © 2003 31

l  Used for
–  Transparency

l  glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

–  Effects (shadows, reflections)
–  Complex materials

l  Quake3 used up to 10 rendering passes, blending toghether
contributions such as:

–  Diffuse lighting (for hard shadows)
–  Bump maps
–  Base texture
–  Specular and emissive lighting
–  Volumetric/atmospheric effects

Today, this would typically be done in one render pass by combining the
effects in the vertex+fragment shader.

–  Enable with glEnable(GL_BLEND)

Blending
dso ccc)1(αα −+=

