Exercise 3

SQL queries

Relational algebra

Example

Courses

SELECT name FROM Courses WHERE nrStudents > 20

Code	Name	nrstudents
AB123	Math	19
CD234	Physics	24
EF345	Karaoke	23
GH456	PERL	20

$>\pi_{\text {name }}\left(\sigma_{\text {nrStudents }>20}(\right.$ Courses $\left.)\right)$

The most common question

> What the hell is relational algebra good for?

The DBMS uses relational algebra

A DBMS may have many different ways of implementing the relational algebra operations.

The aim of query optimization is to choose the most efficient one.
\rangle To do this, it uses formulae that estimate the costs for a number of options and selects the one with the lowest cost.

Projection

Which attributes

Which columns
, SELECT A, C, E
$>\pi_{A, C, E}$

Selection

- Which tuples

Which rows
, WHERE E > 5
$>\sigma_{E}>5$
DONT confuse SELECT (projection) for selection!!

A	B	C	D	E	F
				4	
				7	
				5	
				8	
				3	

SQL vs. Relational Algebra

SELECT
FROM
WHERE
GROUP BY HAVING
ORDER BY

X
T
C
Y

$$
\tau_{Z}\left(\pi_{x}\left(\sigma_{D}\left(/_{y}\left(\sigma_{c}(T)\right)\right)\right)\right)
$$

D
Z

Combining tables

- Set (actually bag) operations

Cartesian product

Joins

Set (actually bag) operations

R UNION ALL S
$R \cup S$
R INTERSECT S $R \cap S$

R MINUS S
$R-S$

$$
\begin{array}{|l|l|}
\hline \mathbf{A} & \boldsymbol{B} \\
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline 1 & 2 \\
\hline 5 & 6 \\
\hline
\end{array}
$$

Joins

- 3 "basic" joins:
- Cartesian product
- Conditional join

Theta join, Inner join, Equi join, Nonequi join, Natural join

- Outer joín

Cartesian product

Conditional join = Inner join

R,S
WHERE C
or
R JOIN S ON C R ${ }^{\wedge} S$

If C is "R.A $=S . B^{\prime \prime}$

R, A	R, B	S, B	S, C
3	4	3	4

If C is equality -
Equij join
If C is inequality Nonequij join

Beware of NULL!

Special case - Natural join

R NATURAL JOIN S

$$
R \bowtie S
$$

R,A	B	S.C
3	4	5

Outer join

R FULL OUTER JOIN S ON R.B = S.C

R.A	R.B	S.C	S.D
1	2	NULL	NULL
3	4	4	5
NULL	NULL	6	7

All rows in both/left/right table(s) will appear, and the rest will be filled with null if C does not match.

There is more...

Grouping
Renaming
Sorting
Also note that the terminology regarding joins is confused.
Inner join = Equi join (orafag.com)
Inner join = Conditional join (Wikipedia)
Theta join = Conditional join (Course book)

