
Database Usage
(and Construction)

More SQL Queries and Relational Algebra

1

SELECT-FROM-WHERE

• Basic structure of an SQL query:

SELECT attributes

FROM tables

WHERE tests over rows

SELECT X

FROM T

WHERE C
πX(σC(T))

2

Aggregation

• Aggregation functions are functions that
produce a single value over a relation.

– SUM, MAX, MIN, AVG, COUNT

SELECT MAX(nrSeats)

FROM Rooms;

SELECT COUNT(*)

FROM Lectures

WHERE room = ’VR’;

MAX actually has
Rooms as an implicit

argument!

COUNT can be
applied to * count the

number of rows.

3

Quiz!

List the room(s) with the highest number of
seats, and its number of seats.

NOT correct!
Error when trying to execute, why is it so?

SELECT name, MAX(nrSeats)

FROM Rooms;

4

Aggregate functions are special

• Compare the following:

– The ordinary selection/projection results in a
relation with a single attribute nrSeats, and
one row for each row in Rooms.

– The aggregation results in a single value, not
a relation.

– We can’t mix both kinds in the same query!
(almost…more on this later)

SELECT MAX(nrSeats)

FROM Rooms;

SELECT nrSeats

FROM Rooms;

5

name nrSeats

HC1 105

HC2 115

VR 230

HA1 146

HA4 152

SELECT nrSeats

FROM Rooms;

nrSeats

105

115

230

146

152

6

MAX(nrSeats)

230

SELECT MAX(nrSeats)

FROM Rooms;

nrSeats

230

SELECT MAX(nrSeats) AS nrSeats

FROM Rooms;

name nrSeats

HC1 105

HC2 115

VR 230

HA1 146

HA4 152

7

Quiz! New attempt

List the room(s) with the highest number of seats,
and its number of seats.

Not correct either, will list all rooms, together with
the highest number of seats in any room.

Let’s try yet again…

SELECT name,

(SELECT MAX(nrSeats)

FROM Rooms)

FROM Rooms;

8

SELECT name,

(SELECT MAX(nrSeats)

FROM Rooms)

FROM Rooms;

name nrSeats

HC1 105

HC2 115

VR 230

HA1 146

HA4 152

name nrSeats

HC1 230

HC2 230

VR 230

HA1 230

HA4 230

9

Quiz! New attempt

List the room(s) with the highest number of seats,
and its number of seats.

Still not correct, MAX(nrSeats) is not a test over a
row so it can’t appear in the WHERE clause!

Let’s try yet again…

SELECT name, nrSeats

FROM Rooms

WHERE nrSeats = MAX(nrSeats);

10

Quiz!

List the room(s) with the highest number of
seats, and its number of seats.

That’s better!

SELECT name, nrSeats

FROM Rooms

WHERE nrSeats =

(SELECT MAX(nrSeats)

FROM Rooms);

11

Single-value queries

• If the result of a query is known to be a
single value (like for MAX), the whole
query may be used as a value.

• Dynamic verification, so be careful…

SELECT name, nrSeats

FROM Rooms

WHERE nrSeats =

(SELECT MAX(nrSeats)

FROM Rooms);

12

NULL in aggregations

• NULL never contributes to a sum, average
or count, and can never be the maximum
or minimum value.

• If there are no non-null values, the result
of the aggregation is NULL.

13

Summary – aggregation

• Aggregation functions: MAX, MIN, COUNT,
AVG, SUM

• Compute a single value over a whole relation.

• Can’t put aggregation directly in the WHERE
clause (since it’s not a function on values).

• Can’t mix aggregation and normal projection!

… well, not quite true…

14

Not quite true?

• Sometimes we want to compute an
aggregation for every value of some other
attribute.

– Example: List the average number of students
that each teacher has on his or her courses.

– To write a query for this, we must compute the
averaging aggregation for each value of

teacher.

15

Grouping

• Grouping intuitively means to partition a relation
into several groups, based on the value of some
attribute(s).

– ”All courses with this teacher go in this group, all
courses with that teacher go in that group, …”

• Each group is a sub-relation, and aggregations
can be computed over them.

• Within each group, all rows have the same value
for the attribute(s) grouped on, and therefore we
can project that value as well!

16

Grouping

• Grouping = given a relation R, a set of attributes
X, and a set of aggregation expressions G;
partition R into groups R1…Rn such that all rows
in Ri have the same value on all attributes in X,
and project X and G for each group.

– ”For each X, compute G”

– γ = gamma = greek letter g = grouping

γX,G(R) SELECT X,G

FROM R

GROUP BY X;

17

Example: List the average number of students that
each teacher has on his or her courses.

SELECT teacher,

AVG(nrStudents)

FROM GivenCourses

GROUP BY teacher;

course per teacher nrSt.

TDA357 4 Rogardt Heldal 130

TDA590 2 Rogardt Heldal 70

TIN090 1 Devdatt Dubhashi 62

teacher AVG(nrSt.)

Rogardt Heldal 100

Devdatt Dubhashi 62

γteacher, AVG(nrStudents)(GivenCourses)
18

Specialized renaming of attributes

• We’ve seen the general renaming operator
already:

– Rename R to A and its attributes to X.

• Can be akward to use, so we are allowed
an easier way to rename attributes:

– E.g.

– Works in normal projection (π) as well.

ρA(X)(R)

γX,G→B(R)
γteacher, AVG(nrStudents)→avgStudents(GivenCourses)

19

Summary – grouping and
aggregation

• Aggregation functions: MAX, MIN, COUNT,
AVG, SUM
– Compute a single value over a whole relation, or a partition of a

relation (i.e. a group).

– If no grouping attributes are given, the aggregation affects the
whole relation (and no ordinary attributes can be projected).

• Can’t put aggregation directly in the WHERE
clause (since it’s not a function on values).

• Can’t mix aggregation and normal projection!
– If an aggregation function is used in the SELECT clause, then

the only other things that may be used there are other
aggregation functions, and attributes that are grouped on.

20

Tests on groups

• Aggregations can’t be put in the WHERE clause
– they’re not functions on rows but on groups.

• Sometimes we want to perform tests on the
result of an aggregation.

– Example: List all teachers who have an average
number of students of >100 in their courses.

• SQL allows us to put such tests in a special
HAVING clause after GROUP BY.

21

Quiz!

List all teachers who have an average
number of students of >100 in their
courses.

SELECT teacher

FROM GivenCourses

GROUP BY teacher

HAVING AVG(nrStudents) > 100;

22

Example

code period teacher #students

TDA357 3 Niklas Broberg 130

TIN090 1 Devdatt Dubhashi 95

TDA357 4 Rogardt Heldal 135

TDA590 2 Rogardt Heldal 70

SELECT teacher

FROM GivenCourses

GROUP BY teacher

HAVING AVG(nrStudents) > 100;

AVG(nrSt.)

130

95

102.5

23

Quiz!

• There is no correspondence in relational
algebra to the HAVING clause of SQL.
Why?

– Because we can express it with an extra
renaming and a selection. Example:

SELECT teacher

FROM GivenCourses

GROUP BY teacher

HAVING AVG(nrStudents) > 100;

σavgSt > 100(γteacher, AVG(nrStudents) → avgSt(GivenCourses))
24

Sorting relations

• Relations are unordered by default.

• Operations could potentially change any existing
ordering.

– Sort relation R on attributes X.

– Ordering only makes sense at the top level, or if only
a given number of rows are sought, e.g. the top 5.

– Oracle: Use the implicit attribute rownum to limit how

many rows should be used.

• τ = tau = greek letter t = sort (s is taken)

τX(R) ORDER BY X [DESC]

25

Example

SELECT *

FROM Courses

ORDER BY name;

code name

TIN090 Algorithms

TDA357 Databases

TDA590 OOSD

26

SELECT-FROM-WHERE-
GROUPBY-HAVING-ORDERBY

• Full structure of an SQL query:
SELECT attributes

FROM tables

WHERE tests over rows

GROUP BY attributes

HAVING tests over groups

ORDER BY attributes

SELECT X,G

FROM T

WHERE C

GROUP BY Y

HAVING D

ORDER BY Z;

τZ’(πX,G’(σD’(γY,G’(σC(T)))))

Only the SELECT
and FROM clauses
must be included.

X must be a subset of Y.
Primes ’ mean we need some renaming.

27

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name

HAVING AVG(nrStudents) > 100

ORDER BY avSt;

course per teacher nrSt

TDA357 3 Niklas Broberg 130

TDA357 2 Graham Kemp 95

TIN090 1 Devdatt Dubhashi 62

code name

TDA357 Databases

TIN090 Algorithms

Courses

GivenCourses

τavSt(πname, avSt(σavSt > 100
(γcode, name, AVG(nrStudents)→avSt(σcode = course(Courses x GivenCourses)))))

28

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses
WHERE code = course

GROUP BY code, name

HAVING AVG(nrStudents) > 100

ORDER BY avSt;

code name course per teacher nrSt

TDA357 Databases TDA357 3 Niklas Broberg 130

TDA357 Databases TDA357 2 Graham Kemp 95

TDA357 Databases TIN090 1 Devdatt Dubhashi 62

TIN090 Algorithms TDA357 3 Niklas Broberg 130

TIN090 Algorithms TDA357 2 Graham Kemp 95

TIN090 Algorithms TIN090 1 Devdatt Dubhashi 62

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses)))))
29

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course
GROUP BY code, name

HAVING AVG(nrStudents) > 100

ORDER BY avSt;

code name course per teacher nrSt

TDA357 Databases TDA357 3 Niklas Broberg 130

TDA357 Databases TDA357 2 Graham Kemp 95

TDA357 Databases TIN090 1 Devdatt Dubhashi 62

TIN090 Algorithms TDA357 3 Niklas Broberg 130

TIN090 Algorithms TDA357 2 Graham Kemp 95

TIN090 Algorithms TIN090 1 Devdatt Dubhashi 62

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σσσσcode=coursecode=coursecode=coursecode=course((((Courses x GivenCourses))))))))
30

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course
GROUP BY code, name

HAVING AVG(nrStudents) > 100

ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σσσσcode=coursecode=coursecode=coursecode=course((((Courses x GivenCourses))))))))

code name course per teacher nrSt

TDA357 Databases TDA357 3 Niklas Broberg 130

TDA357 Databases TDA357 2 Graham Kemp 95

TIN090 Algorithms TIN090 1 Devdatt Dubhashi 62

31

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name
HAVING AVG(nrStudents) > 100

ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt((((σcode=course(Courses x GivenCourses))))))))

code name course per teacher nrSt

TDA357 Databases TDA357 3 Niklas Broberg 130

TDA357 Databases TDA357 2 Graham Kemp 95

TIN090 Algorithms TIN090 1 Devdatt Dubhashi 62

AVG(nrSt)

112.5

62

32

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name
HAVING AVG(nrStudents) > 100

ORDER BY avSt;

τavSt(πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt((((σcode=course(Courses x GivenCourses))))))))

code name

TDA357 Databases

TIN090 Algorithms

AVG(nrSt)

112.5

62

33

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name

HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σσσσavSt>100avSt>100avSt>100avSt>100((((γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses))))))))

code name

TDA357 Databases

TIN090 Algorithms

AVG(nrSt)

112.5

62

34

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name

HAVING AVG(nrStudents) > 100
ORDER BY avSt;

τavSt(πname,avSt(σσσσavSt>100avSt>100avSt>100avSt>100((((γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses))))))))

code name

TDA357 Databases

AVG(nrSt)

112.5

35

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name

HAVING AVG(nrStudents) > 100

ORDER BY avSt;

τavSt(ππππname,avStname,avStname,avStname,avSt((((σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses))))))))

code name

TDA357 Databases

AVG(nrSt)

112.5

36

Example:
SELECT name, AVG(nrStudents) AS avSt
FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name

HAVING AVG(nrStudents) > 100

ORDER BY avSt;

τavSt(ππππname,avStname,avStname,avStname,avSt((((σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses))))))))

name avSt

Databases 112.5

37

Example:
SELECT name, AVG(nrStudents) AS avSt

FROM Courses, GivenCourses

WHERE code = course

GROUP BY code, name

HAVING AVG(nrStudents) > 100

ORDER BY avSt;

τavSt((((πname,avSt(σavSt>100(γcode,name,AVG(nrStudents)→avSt(σcode=course(Courses x GivenCourses))))))))

name avSt

Databases 112.5

38

Relations as sets

• Relations are sets of tuples.

• Set theory has plenty to borrow from:

– Some we’ve seen, like ∊ (IN).
– More operators:

• U (union)

• ∩ (intersection)

• ∖ (set difference)

39

Set operations
• Common set operations in SQL

– UNION: Given two relations R1 and R2, add them
together to form one relation R1 U R2.

– INTERSECT: Given two relations R1 and R2, return all
rows that appear in both of them, forming R1 ∩ R2.

– EXCEPT: Given two relations R1 and R2, return all
rows that appear in R1 but not in R2, forming R1 ∖ R2.

• Oracle calls this operation MINUS.

• All three operations require that R1 and R2 have
(almost) the same schema.
– Attribute names may vary, but number, order and

types must be the same.

40

Quiz!

List all courses and the periods they are given in.
Courses that are not scheduled for any period
should also be listed, but with NULL in the field
for period. You must use a set operation.

(SELECT course, period

FROM GivenCourses)

UNION

(SELECT code, NULL

FROM Courses

WHERE code NOT IN

(SELECT course

FROM GivenCourses));

41

course period teacher #students

TDA357 3 Niklas Broberg 130

TDA357 4 Rogardt Heldal 135

TIN090 1 Devdatt Dubhashi 95

TDA590 2 Rogardt Heldal 70

code name

TIN090 Algorithms

TDA590 OOS

TDA357 Databases

TDA100 AI

(SELECT course, period

FROM GivenCourses)

UNION

(SELECT code, NULL

FROM Courses

WHERE code NOT IN

(SELECT course

FROM GivenCourses));

42

course period

TDA357 3

TDA357 4

TIN090 1

TDA590 2

code NULL

TDA100 Null

(SELECT course, period

FROM GivenCourses)

UNION

(SELECT code, NULL

FROM Courses

WHERE code NOT IN

(SELECT course

FROM GivenCourses));

U

43

Result

course period

TDA357 3

TDA357 4

TIN090 1

TDA590 2

TDA100

44

Not sets but bags!

• In set theory, a set cannot contain
duplicate values. Either a value is in the
set, or it’s not.

• In SQL, results of queries can contain the
same tuples many times.
– Done for efficiency, eliminating duplicates is

costly.

• A set where duplicates may occur is called
a bag, or multiset.

45

Controlling duplicates

• Queries return bags by default. If it is important
that no duplicates exist in the set, one can add
the keyword DISTINCT.
– Example:

• DISTINCT can also be used with aggregation
functions.
– Example:

SELECT DISTINCT teacher

FROM GivenCourses;

SELECT COUNT(DISTINCT teacher)

FROM GivenCourses;

46

course period teacher #students

TDA357 3 Niklas Broberg 130

TDA357 4 Rogardt Heldal 135

TIN090 1 Devdatt Dubhashi 95

TDA590 2 Rogardt Heldal 70

SELECT teacher

FROM GivenCourses;

teacher

Niklas Broberg

Rogardt Heldal

Devdatt Dubhashi

Rogardt Heldal
47

course period teacher #students

TDA357 3 Niklas Broberg 130

TDA357 4 Rogardt Heldal 135

TIN090 1 Devdatt Dubhashi 95

TDA590 2 Rogardt Heldal 70

SELECT DISTINCT teacher

FROM GivenCourses;

teacher

Niklas Broberg

Rogardt Heldal

Devdatt Dubhashi

48

course period teacher #students

TDA357 3 Niklas Broberg 130

TDA357 4 Rogardt Heldal 135

TIN090 1 Devdatt Dubhashi 95

TDA590 2 Rogardt Heldal 70

SELECT COUNT (teacher)

FROM GivenCourses;

COUNT(teacher)

4

49

course period teacher #students

TDA357 3 Niklas Broberg 130

TDA357 4 Rogardt Heldal 135

TIN090 1 Devdatt Dubhashi 95

TDA590 2 Rogardt Heldal 70

SELECT COUNT (DISTINCT teacher)

FROM GivenCourses;

COUNT (DISTINCT teacher)

3

50

Duplicate elimination

• Duplicate elimination = Given relation R, remove
all duplicate rows.

– Remove all duplicates from R.

• δ = delta = greek letter d = duplicate elimination

δ(R)

SELECT DISTINCT X

FROM R

WHERE C;

δ(πX(σC(R)))

51

Retaining duplicates

• Set operations eliminate duplicates by default.
– For pragmatic reasons – to compute either

intersection or set difference efficiently, the relations
need to be sorted, and then eliminating duplicates
comes for free.

• If it is important that duplicates are considered,
one can add the keyword ALL.
– Example:

(SELECT room

FROM Lectures)

EXCEPT ALL

(SELECT name

FROM Rooms);

All rooms appear once in Rooms. The set
difference will remove each room once
from the first set, thus leaving those rooms
that have more than one lecture in them.

Doesn’t work in Oracle, there
ALL only works for UNION.

52

Summary – relations as sets

• Set operations can be used on relations

– Requires the operands to have the same arity
(number of attributes) and types must match.

• UNION

• INTERSECT

• EXCEPT (MINUS)

• Relations are treated as bags in most queries,
but as sets in the result of a set operation.

– To eliminate duplicates, use DISTINCT.

– To retain duplicates for set operations, use ALL.

53

Common idiom

List all courses and the periods they are given in.
Courses that are not scheduled for any period
should also be listed, but with NULL in the field
for period. You must use a set operation.

(SELECT code, period

FROM Courses, GivenCourses

WHERE code = course)

UNION

(SELECT code, NULL

FROM Courses

WHERE code NOT IN

(SELECT course

FROM GivenCourses));

First compute those
that fit in the join, then
union with those that
don’t.

54

Outer join

• Compute the join as usual, but retain all tuples
that don’t fit in from either or both operands,
padded with NULLs.

– FULL means retain all tuples from both operands.
LEFT or RIGHT retains only those from one of the
operands.

– Can be used with ordinary join as well.

• R1 LEFT OUTER JOIN R2 ON C;

R1 ⋈ R2˚ SELECT *

FROM

R1 NATURAL FULL OUTER JOIN R2;

55

Quiz!

List all courses and the periods they are given in.
Courses that are not scheduled for any period
should also be listed, but with NULL in the field
for period.

SELECT code, period

FROM Courses LEFT OUTER JOIN GivenCourses

ON code = course;

56

course period teacher #students

TDA357 3 Niklas Broberg 130

TDA357 4 Rogardt Heldal 135

TIN090 1 Devdatt Dubhashi 95

TDA590 2 Rogardt Heldal 70

code name

TIN090 Algorithms

TDA590 OOS

TDA357 Databases

TDA100 AI

SELECT code, period

FROM Courses

LEFT OUTER JOIN

GivenCourses

ON code = course;

57

code period

TDA357 3

TDA357 4

TIN090 1

TDA590 2

TDA100 Null

SELECT code, period

FROM Courses

LEFT OUTER JOIN

GivenCourses

ON code = course;

58

Summary
SQL and Relational Algebra

• SQL is based on
relational algebra.
– Operations over relations

• SELECT-FROM-
WHERE-GROUPBY-
HAVING-ORDERBY

• Operations for:
– Selection of rows (σ)

– Projection of columns (π)

– Combining tables
• Cartesian product (x)

• Join, natural join, outer
join (⋈⋈⋈⋈C, ⋈⋈⋈⋈, ⋈⋈⋈⋈)

– Grouping and aggregation

• Grouping (γ)

• SUM, AVG, MIN, MAX,
COUNT

– Set operations
• Union (∪)

• Intersect (∩)

• Set difference (∖)
– Miscellaneous

• Renaming (ρ)

• Duplicate elimination (δ)

• Sorting (τ)

• Subqueries
– Sequencing

– (Views)

˚

59

Course Objectives – Usage

When the course is through, you should

– Know how to query a database for relevant
data using SQL

– Know how to change the contents of a
database using SQL

”Add a course ’Databases’ with course code ’TDA357’,
given by …”

”Give me all info regarding the course ’TDA357’”

60

Exam – Relational Algebra (6)

”Here is a schema for a database over persons and their

employments. …”

• What does this relational-algebraic expression
compute? …

• Translate this relational-algebraic expression to SQL.

• Write a relational-algebraic expression that computes
… .

• Translate this SQL query to a relational-algebraic
expression.

61

Exam – SQL Queries (8)

”The grocery store wants your help in getting proper

information from their database. …”

• Write a query that finds the total value of the entire
inventory of the store.

• List all products with their current price, i.e. the
discount price where such exists, otherwise the base
price.

62

Next Lecture

More on Modifications and Table Creation

Assertions

Triggers

63

