
Database Construction

and Usage

SQL DDL and DML
Relational Algebra

1

Goals of database design

• ”Map” the domain, find out what the
database is intended to model.

– The database should accept all data that is
possible in reality.

– The database should agree with reality and

not accept impossible or unwanted data.

• We accomplish this by making sure that

our database captures all the constraints

of the domain.

2

The whole point of design

• The result of design should be a database
schema that is:

– Correctly models the domain and its
constraints.

– Easy to understand.

– Can be implemented directly in a DBMS!

…even by someone else than the designer

3

Constraints

• We have different kinds of constraints:

– Dependency constraints (X → A)

• Table structure, keys, uniqueness

– Referential constraints

• References (a.k.a. foreign keys)

– Value constraints

• E.g. a room must have a positive number of seats

– Cardinality constraints

• E.g. no teacher may hold more than 2 courses at the same
time.

4

Extra constraints in E-R

code

name Given GivenCourse teacher

period #students

Course

Period is a
number 1-4

The point is that the diagram should be easy
to understand, and easy to implement!

5

Extra constraints in schemas

• No formal syntax exists. Don’t let that stop
you!

GivenCourses(course, period, teacher)

1 ≤≤≤≤ period ≤≤≤≤ 4

6

Course Objectives

Design

Construction

Interfacing

Usage

7

Course Objectives – Construction

When the course is through, you should

– Given a database schema with related

constraints, implement the database in a
relational DBMS

8

SQL Data Definition Language

9

Case convention

• SQL is completely case insensitive.
Upper-case or Lower-case makes no

difference. We will use case in the
following way:

– UPPERCASE marks keywords of the SQL

language.

– lowercase marks the name of an attribute.

– Capitalized marks the name of a table.

10

Creating and dropping tables

• Relations become tables, attributes become
columns.

CREATE TABLE tablename (

<list of table elements>

);

DROP TABLE tablename;

DESCRIBE tablename;

• Get all info about a created table:

• Remove a created table:

Oracle specific!

11

Table declaration elements

• The basic elements are pairs consisting of
a column name and a type.

• Most common SQL types:

– INT or INTEGER (synonyms)

– REAL or FLOAT (synonyms)

– CHAR(n) = fixed-size string of size n.

– VARCHAR(n) = variable-size string of up to

size n.

12

Example

Example:

CREATE TABLE Courses (

code CHAR(6),

name VARCHAR(50)

);

code name

Created the table courses:

13

Declaring keys

• An attribute or a list of attributes can be
declared PRIMARY KEY or UNIQUE
– PRIMARY KEY: (At most) One per table,

never NULL. Efficient lookups in all DBMS.

– UNIQUE: Any number per table, can be
NULL. Could give efficient lookups (may vary
in different DBMS).

• Both declarations state that all other
attributes of the table are functionally
determined by the given attribute(s).

14

Example

CREATE TABLE Courses(

code CHAR(6),

name VARCHAR(50),

PRIMARY KEY (code)

);

15

Foreign keys

• Referential constraints are handled with
references, called foreign keys.

– FOREIGN KEY attribute

REFERENCES table(attribute).

FOREIGN KEY course

REFERENCES Courses(code)

16

Foreign keys

• General:

FOREIGN KEY course REFERENCES Courses(code)

• If course is Primary Key in Courses:

FOREIGN KEY course

REFERENCES Courses

• Give a name to the foreign key:

CONSTRAINT ExistsCourse

FOREIGN KEY course

REFERENCES Courses

17

Example

CREATE TABLE GivenCourses (

course CHAR(6),

period INT,

numStudents INT,

teacher VARCHAR(50),

PRIMARY KEY (course, period),

FOREIGN KEY (course) REFERENCES Courses(code)

);

18

Example

CREATE TABLE GivenCourses (

course CHAR(6) REFERENCES Courses,

period INT,

numStudents INT,

teacher VARCHAR(50),

PRIMARY KEY (course, period)

);

19

Value constraints

• Use CHECK to insert simple value
constraints.

– CHECK (some test on attributes)

CHECK (period IN (1,2,3,4))

20

Example

CREATE TABLE GivenCourses (

course CHAR(6),

period INT CHECK (period IN (1,2,3,4)),

numStudents INT,

teacher VARCHAR(50),

FOREIGN KEY (course) REFERENCES Courses(code),

PRIMARY KEY (course, period)

);

21

Naming constraints

• Default error messages are horrible.

• Naming constraints makes them a lot
easier to read and understand.

CONSTRAINT constraint-name
constraint

CONSTRAINT ValidPeriod

CHECK (period in (1,2,3,4))

22

Example

CREATE TABLE GivenCourses (

course CHAR(6) REFERENCES Courses,

period INT,

numStudents INT,

teacher VARCHAR(50),

PRIMARY KEY (course, period),

CONSTRAINT ValidPeriod CHECK (period in (1,2,3,4))

);

23

Example

• Legal:

– INSERT INTO GivenCourses

VALUES (’TDA357’,2,93,’Graham Kemp’);

• Not Legal:

– INSERT INTO GivenCourses

VALUES (’TDA357’,7,93,’Graham Kemp’);

– ERROR at line 1:

• ORA-02290: check constraint
(NIBRO.VALIDPERIOD) violated

24

Example: DESCRIBE
CREATE TABLE GivenCourses (

course CHAR(6) REFERENCES Courses(code),

period INT,

numStudents INT,

teacher VARCHAR(50),

PRIMARY KEY (course, period),

CONSTRAINT ValidPeriod CHECK (period in (1,2,3,4))

);

Name Null? Type

COURSE NOT NULL CHAR(6)

PERIOD NOT NULL NUMBER(38)

NUMSTUDENTS NUMBER(38)

TEACHER VARCHAR2(50)

DESCRIBE GivenCourses;

25

Exam – SQL DDL (8)

”A grocery store wants a database to store information
about products and suppliers. After studying their
domain you have come up with the following database
schema. …”

• Write SQL statements that create the relations as
tables in a DBMS, including all constraints.

26

Course Objectives

Design

Construction

Interfacing

Usage

27

SQL Data Manipulation Language:

Modifications

28

Course Objectives – Usage

When the course is through, you should

– Know how to change the contents of a

database using SQL

29

Inserting data

INSERT INTO tablename

VALUES (values for attributes);

INSERT INTO Courses

VALUES (’TDA357’, ’Databases’);

code name

TDA357 Databases

30

Deletions

DELETE FROM tablename

WHERE test over rows;

DELETE FROM Courses

WHERE code = ’TDA357’;

31

Quiz

code name

TDA357 Databases

TIN090 Algorithms

DELETE FROM Courses

WHERE code = ’TDA357’;

code name

TIN090 Algorithms

Quiz: What does this statement do?

DELETE FROM Courses;
32

Updates

UPDATE tablename

SET attribute = ...

WHERE test over rows

UPDATE GivenCourses

SET teacher = ’Graham Kemp’

WHERE course = ’TDA357’

AND period = 2;

33

Quiz

course per #st teacher

TDA357 3 87 Niklas Broberg

TDA357 2 93 Rogardt Heldal

TIN090 1 64 Devdatt Dubhashi

course per #st teacher

TDA357 3 87 Niklas Broberg

TDA357 2 93 Graham Kemp

TIN090 1 64 Devdatt Dubhashi

UPDATE GivenCourses

SET teacher = ’Graham Kemp’

WHERE code = ’TDA357’

AND period = 2;

34

Summary

• SQL Data Definition Language

– CREATE TABLE, attributes

– Constraints
•PRIMARY KEY

•FOREIGN KEY … REFERENCES

•CHECK

• SQL Data Manipulation Language

– INSERT, DELETE, UPDATE

35

Course Objectives

Design

Construction

Interfacing

Usage

36

Course Objectives – Usage

When the course is through, you should

– Know how to query a database for relevant

data using SQL

37

Queries:

SQL and Relational Algebra

38

Querying

• To query the database means asking it for
information.

– ”List all courses that have lectures in room
VR”

• Unlike a modification, a query leaves the
database unchanged.

39

SQL

• SQL = Structured Query Language

– The querying parts are really the core of SQL.

The DDL and DML parts are secondary.

• Very-high-level language.

– Specify what information you want, not how to
get that information (like you would in e.g.

Java).

• Based on Relational Algebra

40

”Algebra”

• An algebra is a mathematical system
consisting of:

– Operands: variables or values to operate on.

– Operators: symbols denoting functions that
operate on variables and values.

41

Relational Algebra

• An algebra whose operands are relations
(or variables representing relations).

• Operators representing the most common

operations on relations.

– Selecting rows

– Projecting columns

– Composing (joining) relations

42

Selection

• Selection = Given a relation (table),
choose what tuples (rows) to include in the

result.

– Select the rows from relation T that satisfy

condition C.

– σ = sigma = greek letter s = selection

σC(T) SELECT * FROM T WHERE C;

43

Example:

GivenCourses =

SELECT *

FROM GivenCourses

WHERE course = ’TDA357’;

Result =

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp
What?

44

Projection

• Given a relation (table), choose what
attributes (columns) to include in the

result.

– Select the rows from table T that satisfy

condition C, and project columns X of the
result.

– π = pi = greek letter p = projection

πX(σC(T)) SELECT X FROM T WHERE C;

45

Example:

GivenCourses =

SELECT course, teacher

FROM GivenCourses

WHERE course = ’TDA357’;

Result =

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course teacher

TDA357 Niklas Broberg

TDA357 Graham Kemp
What?

46

The confusing SELECT
Example:

GivenCourses =

SELECT course, teacher

FROM GivenCourses;

Result =

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

course teacher

TDA357 Niklas Broberg

TDA357 Graham Kemp

TIN090 Devdatt Dubhashi

Quiz: SELECT is a projection??

What?

47

Mystery revealed!

SELECT course, teacher

FROM GivenCourses;

• In general, the SELECT clause could be seen as

corresponding to projection, and the WHERE
clause to selection (don’t confuse the naming
though).

πcode,teacher(σ(GivenCourses))
= πcode,teacher(GivenCourses)

48

Quiz!

• What does the following expression
compute?

SELECT *

FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’;

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

code name

TDA357 Databases

TIN090 Algorithms

Courses
GivenCourses

49

FROM Courses, GivenCourses

code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

TDA357 Databases TDA357 2 Graham Kemp

TDA357 Databases TIN090 1 Devdatt
Dubhashi

TIN090 Algorithms TDA357 3 Niklas Broberg

TIN090 Algorithms TDA357 2 Graham Kemp

TIN090 Algorithms TIN090 1 Devdatt
Dubhashi

50

WHERE teacher = ’Niklas

Broberg’

code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

TDA357 Databases TDA357 2 Graham Kemp

TDA357 Databases TIN090 1 Devdatt
Dubhashi

TIN090 Algorithms TDA357 3 Niklas Broberg

TIN090 Algorithms TDA357 2 Graham Kemp

TIN090 Algorithms TIN090 1 Devdatt
Dubhashi

51

Answer:

The result is all rows from Courses combined in all

possible ways with all rows from GivenCourses, and

then keep only those where the teacher attribute is

Niklas Broberg.

code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

TIN090 Algorithms TDA357 3 Niklas Broberg

SELECT *

FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’;

52

Cartesian Products

• The cartesian product of relations R1 and
R2 is all possible combinations of rows

from R1 and R2.

– Written R1 x R2

– Also called cross-product, or just product

SELECT *

FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’;

σteacher = ’Niklas Broberg’(Courses xxxx GivenCourses)Quiz: Translate to a Relational Algebra expression.
53

Quiz!

List all courses, with names, that Niklas Broberg is

responsible for.

Courses(code,name)

GivenCourses(course,per,teacher)

course -> Courses.code

SELECT *

FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’

AND code = course;

code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

54

code = course

code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

TDA357 Databases TDA357 2 Graham Kemp

TDA357 Databases TIN090 1 Devdatt
Dubhashi

TIN090 Algorithms TDA357 3 Niklas Broberg

TIN090 Algorithms TDA357 2 Graham Kemp

TIN090 Algorithms TIN090 1 Devdatt
Dubhashi

Not equal 55

Joining relations

• Very often we want to join two relations on the
value of some attributes.

– Typically we join according to some reference, as in:

• Special operator ⋈⋈⋈⋈C for joining relations.

SELECT *

FROM Courses, GivenCourses

WHERE code = course;

R1 ⋈⋈⋈⋈C R2 = σC(R1 x R2)

SELECT *

FROM R
1
JOIN R

2
ON C; 56

Example

SELECT *

FROM Courses JOIN GivenCourses

ON code = course;

course per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

code name

TDA357 Databases

TIN090 Algorithms

Courses
GivenCourses

code name course per teacher

TDA357 Databases TDA357 3 Niklas Broberg

TDA357 Databases TDA357 2 Graham Kemp

TIN090 Algorithms TIN090 1 Devdatt Dubhashi

What?

57

Natural join

• ”Magic” version of join.

– Join two relations on the condition that all

attributes in the two that share the same
name should be equal.

– Remove all duplicate columns

– Written R1 ⋈⋈⋈⋈ R2 (like join with no condition)

58

Example

SELECT *

FROM Courses NATURAL JOIN GivenCourses;

code per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

TIN090 1 Devdatt Dubhashi

code name

TDA357 Databases

TIN090 Algorithms

Courses
GivenCourses

code name per teacher

TDA357 Databases 3 Niklas Broberg

TDA357 Databases 2 Graham Kemp

TIN090 Algorithms 1 Devdatt Dubhashi

What?

59

Sets or Bags?

• Relational algebra formally applies to sets
of tuples.

• SQL, the most important query language
for relational databases is actually a bag
language.
– SQL will eliminate duplicates, but usually only

if you ask it to do so explicitly.

• Some operations, like projection, are much
more efficient on bags than sets.

60

Relational Algebra on Bags

• A bag is like a set, but an element may
appear more than once.
– Multiset is another name for bag

• Example: {1,2,1,3} is a bag. {1,2,3} is
also a bag that happens to be a set.

• Bags also resemble lists, but order in a
bag is unimportant.
– Example: {1,2,1} = {1,1,2} as bags, but

[1,2,1] != [1,1,2] as lists.

61

Operations on Bags

• Selection applies to each tuple, so its
effect on bags is like its effect on sets.

• Projection also applies to each tuple, but
as a bag operator, we do not eliminate
duplicates.

• Products and joins are done on each pair
of tuples, so duplicates in bags have no
effect on how we operate.

62

Quiz!

A B

1 2

5 6

1 3

R(A,B)

SELECT A

FROM R ?

A

1

5

1

63

Quiz!

A B

1 2

5 6

1 3

R(A,B)

πA(R) ?

A

1

5

64

Summary so far

• SQL is based on relational algebra.

• Operations for:
– Selection of rows

– Projection of columns

– Combining tables
• Cartesian product

• Join, natural join

• Bags/Sets semantics

• Much more to come!

65

Next Lecture

More Relational Algebra and SQL

66

