
Database design III

Functional dependencies cont.

BCNF and 3NF

1

Summary – FDs so far

• X → A

– X ”determines” A, A ”depends on” X

• FDs as domain constraints

– When is the constraint captured by the schema?

• Trivial FDs, combining RHSs

• Computing closures

– Attribute closures: X+

– FD set closures: F+

2

Summary – Finding keys

• Superkeys, keys, primary keys

• Using FDs and closures to find keys

• Uniqueness constraints to capture extra keys

(room, period, weekday, hour) unique

3

Quiz time!

What’s wrong with this diagram?

Courses(code, period, name, teacher)

Coursename

code

teacher

period

It merges courses and given

courses into one entity.

Translating we get:

4

Quiz time!

What’s wrong with this schema?

Courses(code, period, name, teacher)

{(’TDA357’, 3, ’Databases’, ’Niklas Broberg’),

(’TDA357’, 2, ’Databases’, ’Graham Kemp’)}

Redundancy!

code→ name

code, period→ teacher

5

Using FDs to detect anomalies

• Whenever X → A holds for a relation R,
but X is not a key for R, then values of A

will be redundantly repeated!

Courses(code, period, name, teacher)

{(’TDA357’, 3, ’Databases’, ’Niklas Broberg’),

(’TDA357’, 2, ’Databases’, ’Graham Kemp’)}

code→ name

code, period→ teacher

6

Using FDs to spot errors

• We made the error in the diagram. The FD
pointed it out.

– Fix #1: Go back and redo the diagram.

– Fix #2: Decompose the relation.

7

Decomposition

• Fix the problem by decomposing Courses:

– Create one relation with the attributes from the offending FD, in
this case code and name.

– Keep the original relation, but remove all attributes from the RHS
of the FD. Insert a reference from the LHS in this relation, to the
key in the first.

Courses(code, name)

GivenCourses(code, period, teacher)

code -> Courses.code

Courses(code, period, name, teacher)

code→ name
code, period→ teacher

8

Decomposition Picture

R-X + X X +-X

R
2

R
1

R

9

Boyce-Codd Normal Form

• A relation R is in Boyce-Codd Normal
Form (BCNF) if, whenever a nontrivial FD

X → A holds on R, X is a superkey of R.

– Remember: nontrivial means A is not part of X

– Remember: a superkey is any superset of a

key (including the keys themselves).

Courses(code, name)

GivenCourses(code, period, teacher)

10

BCNF violations

• We say that a FD X → A violates BCNF
with respect to relation R if X → A holds

on R, but X is not a superkey or R.

Example: code→ name violates BCNF for

the relation

but code, period→ teacher does not.

Courses(code, period, name, teacher)

11

BCNF normalization

• Algorithm: Given a relation R and FDs F.

1. Compute F+, i.e. the closure of F.

2. Look among the FDs in F+ for a violation

X → A of BCNF w.r.t. R.

3. Decompose R into two relations

– One relation RX containing all the attributes in X+.

– The original relation R, except the values in X+ that are not
also in X (i.e. R – X+ + X), and with a reference from X to X
in RX.

4. Repeat from 2 for the two new relations until there

are no more violations.

12

Decompose Courses into BCNF.

Courses(code, period, name, teacher)

code→ name

code, period→ teacher

Courses(code, name)

GivenCourses(course, period, teacher)

course -> Courses.code

{code}+ = {code, name}

No BCNF violations left, so we’re done!

Quiz!

13

Recovery

• We must be able to recover the original data after

decomposition.

code per name teacher

TDA357 3 Databases Niklas Broberg

TDA357 2 Databases Graham Kemp

code name

TDA357 Databases

code per teacher

TDA357 3 Niklas Broberg

TDA357 2 Graham Kemp

code per name teacher

TDA357 3 Databases Niklas Broberg

TDA357 2 Databases Graham Kemp

+

14

”Lossy join”

Let’s try to split on non-existant code→ teacher

code per name teacher

TDA357 3 Databases Niklas Broberg

TDA357 2 Databases Graham Kemp

code teacher

TDA357 Niklas Broberg

TDA357 Graham Kemp

code per name

TDA357 3 Databases

TDA357 2 Databases

code per name teacher

TDA357 3 Databases Niklas Broberg

TDA357 2 Databases Niklas Broberg

TDA357 3 Databases Graham Kemp

TDA357 2 Databases Graham Kemp

+

15

Lossless join

• Only if we decompose on proper
dependencies can we guarantee that no

facts are lost.

– Schemas from proper translation of correct

E-R diagrams get this ”for free”.

– The BCNF decomposition algorithm
guarantees lossless join.

• A decompositon that does not give

lossless join is bad.

16

Quiz!

Decompose Schedules into BCNF.
Schedules(code, name, period, numStudents, teacher,

room, numSeats, weekday, hour)

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code

teacher, period, weekday, hour → room

Done on blackboard.

17

Quiz result

Courses(code, name)

GivenCourses(course, period, #students, teacher)

course -> Courses.code

Rooms(name, #seats)

Lectures(course, period, room, weekday, hour)

(course, period) -> GivenCourses.(course, period)

room -> Rooms.name

(room, period, weekday, hour) unique

Quiz: teacher, period, weekday, hour → room ?

Same as what we got by translating our E-R diagram

(lecture 2), plus the extra uniqueness constraint!

18

Quiz again!

Why not use BCNF decomposition for designing
database schemas? Why go via E-R

diagrams?

– Decomposition doesn’t handle all situations

gracefully. E.g.

• Self-relationships

• Many-to-one vs. many-to-”exactly one”

• Subclasses

• Single-attribute entities

– E-R diagrams are graphical, hence easier to sell

than some ”mathematical formulae”.

19

Quiz again!

Why use FDs and decomposition at all? Why not
just go via E-R diagrams?

– Some constraints (”physical reality”) are not

captured by E-R modelling.

– FDs/BCNF decomposition allows you to:

• Prove that your design is free from redundancy (or

discover that it isn’t!).

• Spot dependency constraints that are not captured
(e.g. teacher, period, weekday, hour → room),

and do something sensible about them.

• Discover errors in your E-R model or translation to

relations.

20

Example

code

name Given GivenCourse

period #students

Course

TeacherKnows InvolvedIn

We probably want to ensure that a teacher can only be

involved in giving a course that they know. We have no

formal syntax or theory for such ”extra” constraints.

name

21

Example

Courses(code, name)

GivenCourses(course, period, #students, teacher)

course -> Courses.code

Teachers(name)

Knows(teacher, course)

teacher -> Teachers.name

course -> Courses.code

InvolvedIn(teacher, course, period)

teacher -> Teachers.name

(course, period) -> GivenCourses.(course, period)

(teacher, course) -> Knows(teacher, course)

Insert an extra reference!

22

Equality constraints

• FDs don’t always give the full story.

• Equality constraints over circular
relationship paths are relatively common.

– Can sometimes – but not always – be
captured via extra references.

– Extra attributes may be needed – more on

that later…

23

Example of BCNF decomposition:

Decompose:

GivenCourses(course, period, teacher)

course -> Courses.code

course, period→ teacher

teacher→ course
Violation!

Teaches(teacher, course)

course -> Courses.code

GivenCourses(period, teacher)

teacher -> Teaches.teacher

Quiz: What just went wrong?

Two keys:
{course, period}

{teacher, period}

24

Teaches(teacher, course)

course -> Courses.code

GivenCourses(period, teacher)

teacher -> Teaches.teacher

teacher course

Niklas Broberg TDA357

Graham Kemp TDA357

per teacher

2 Niklas Broberg

2 Graham Kemp

course per teacher

TDA357 2 Niklas Broberg

TDA357 2 Graham Kemp

course, period→ teacher ??
25

Problem with BCNF

• Some structures cause problems for
decomposition.

– Ex: AB → C, C → B

– Decomposing w.r.t. C → B gets us two relations,

containing {C,B} and {A,C} respectively. This means

we can no longer enforce AB → C!

– Intuitively, the cause of the problem is that we must

split the LHS of AB → C over two different relations.

• Not quite the full truth, but good enough.

– (This is exactly what happened earlier with

!)teacher, period, weekday, hour → room

26

Third Normal Form (3NF)

• 3NF is a weakening of BCNF that handles
this situation.

– An attribute is prime in relation R if it is a
member of any key of R.

– Non-trivial X → A violates BCNF for R if X is

not a superkey of R.

– Non-trivial X → A violates 3NF for R if X is not
a superkey of R, and A is not prime in R.

27

Different algorithm for 3NF

• Given a relation R and a set of FDs F:

– Compute the minimal basis of F.

• Minimal basis means F+, except remove A → C if

you have A → B and B → C in F+.

– Group together FDs with the same LHS.

– For each group, create a relation with the LHS

as the key.

– If no relation contains a key of R, add one
relation containing only a key of R.

28

Example:

Decompose:

Courses(code, period, name, teacher)

code→ name

code, period→ teacher

teacher→ code

Two keys:
{course, period}

{teacher, period}

Courses(code, name)

GivenCourses(course, period, teacher)

course -> Courses.code

teacher -> Teaches.teacher

Teaches(teacher, course)

course -> Courses.code

GivenCourses contains a key for the original Courses

relation, so we are done. 29

Earlier example revisited:

Since all attributes are members of some key, i.e.
all attributes are prime, there are no 3NF

violations. Hence GivenCourses is in 3NF.

GivenCourses(course, period, teacher)

course -> Courses.code

course, period→ teacher

teacher→ course

Two keys:
{course, period}

{teacher, period}

Quiz: What’s the problem now then?

30

One 3NF solution for scheduler

Courses(code, name)

GivenCourses(course, period, #students, teacher)

course -> Courses.code

Rooms(name, #seats)

Lectures(course, period, room, weekday, hour, teacher)

(course, period, teacher) ->

GivenCourses.(course, period, teacher)

room -> Rooms.name

(room, period, weekday, hour) unique

(teacher, period, weekday, hour) unique

Quiz: What’s the problem now then?

31

GivenCourses is in 3NF. But teacher→ course

violates BCNF, since teacher is not a key. As a
result, course will be redundantly repeated!

GivenCourses(course, period, teacher)

course -> Courses.code

course, period→ teacher

teacher→ course

Two keys:
{course, period}

{teacher, period}

Redundancy with 3NF

32

3NF vs BCNF

• Three important properties of decomposition:

1. Recovery (loss-less join)

2. No redundancy

3. Dependency preservation

• 3NF guarantees 1 and 3, but not 2.

• BCNF guarantees 1 and (almost) 2, but not 3.

– 3 can sometimes be recovered separately through

”assertions” (costly). More on this later.
33

Almost?

Example:

Courses(code, name, room, teacher)

code→ name code room teacher

TDA357 VR Niklas Broberg

TDA357 VR Graham Kemp

TDA357 HC1 Niklas Broberg

TDA357 HC1 Graham Kemp

code name

TDA357 Databases

These two relations are in BCNF, but there’s lots of

redundancy!

Quiz: Why?
34

Course Objectives – Design

When the course is through, you should

– Given a domain, know how to design a
database that correctly models the domain
and its constraints.

”We want a database that we can use for
scheduling courses and lectures. This is
how it’s supposed to work: …”

35

Exam – FDs and NFs (12)

”A car rental company has the following, not very

successful, database. They want your help to improve

it. …”

• Identify all functional dependencies you expect to hold

in the domain.

• Indicate which of those dependencies violate BCNF

with respect to the relations in the database.

• Do a complete decomposition of the database so that

the resulting relations are in BCNF.

36

Next Lecture

Independencies and 4NF

37

