AFP - Lecture 2
Domain Specific
Embedded Languages

Patrik Jansson
2014

(slides by Norell, Bernardy & Jansson)

Primitive and Derived
operations

» A primitive operation is defined
exploiting the definitions of the
involved type

« A derived operation can be defined
puréiy”’in terms of other operations

Try to keep the set
of primitive mapS :: (a -> b) -> Signal a -> Signal b

operations as small mapS fs =constSf $$ s
as possible! (Why?)

Implementation of a DSEL
* Shallow embedding

— Represent elements by their semantics (what
observations they support)

— Constructor functions and combinators do
the work, run functions for free

Is the signal
library a deep
*>@ or shallow

. ing?
+ Deep embedding embedding?
— Represent elements by how they are constructed
— Most of the work done by the run functions,
constructor functions and combinators for free

* Or something in between...

Anatomy of a DSEL

newtype Signal a = Signal (Time -> a)

* A set of types maoue

the domain

» Constructor functions constructing
elements of these types

* Combinators combining and

($$) :: Signal (a -> b) -> Signal a -> Signal b
mapS :: (a -> b) -> Signal a -> Signal b

* Run functions making observations
of the elemern

sample :: Signal a -> (Time -> a)

Answer: Awkwardly!

addS x y = mapS (\t -> sample x t + sample y t) timeS

— Combining elements into more complex 7
ones should be easy and natural /

Suppose we didn’t have ($$) in our
Signal language. How would you define

addS x y = constS (+) $$x $$ y

* Abstraction

—The user shouldn’t have to know (or be
allowed to exploit) the underlying

implementatior :

0
Changing
implementation
shouldn’t break user

code!

A deep embedding of Signals

Generalized Algebraic

data Signal a where Datatype (GADT). More on
ConstS  ::a-> Signal a these in another lecture.
TimeS  ::Signal Time
(:$%$) :: Signal (a -> b) -> Signal a -> Signal b

Simple constructors

O g CONStS and combinators.

timeS = TimeS
($%) = (:$$)

All the work
sample :: Signal a -> (Time -> a) happens in the run
sample (ConstS x) = const x function.
sample TimeS =id
sample (f :$$ x) =\t->sampleft $ samplext

Derived operations
are unaffected by
implementation style.

-- Start of derived operations
maps :: (a -> b) -> Signal a -> Signal b
mapS f x = constS f $$ x




Deep vs. Shallow

example
+ A shallow embedding (when it works out)
is often more elegant

N

— When there is an obvious semantics ﬂYVorking c?uitﬂ
embeddings usually work out nicel ett’}ép\?e"r;,'g

Most of the time you get a mix o difficult...

between deep and shallow!

+ A deep embedding is easier
— Adding new operations
— Adding new run functions
— Adding optimizations

Deep embedding
may give you an
easier start

another lecture.

Interface, continued

» Think about primitive/derived operations
— No obvious derived operations
— Sometimes introducing additional primitives
makes the language nicer

invert :: Shape -> Shape
transform :: Matrix -> Shape -> Shape

working with
matrices!

scale :: Vec -> Shape -> Shape
scale v = transform (matrix (vecX v) 0 0 (vecY v))

rotate :: Angle -> Shape -> Shape
rotate a = transform (matrix (cos a) (-sin a)
i 0s

difference :: Shape -> Shape -> Shape
difference a b = a “intersect” invert b

Shallow embedding

* What are the observations we can
make of a shape?
—inside :: Point -> Shape -> Bool
—So, let’s go for

newtype Shape = Shape (Point -> Bool)

inside :: Point -> Shape -> Bool
inside p (Shape f) = fp é

need to generalize the type of the run function a
little to get a shallow embedding.

Case Study: A language for
Shapes
» Step 1: Design the interface

e
type Shape e tra o , : o
= Constuctorfunctions get more interesting discs
empty Shape/ and rectangles.
disc :: Shape
square :: Shape
-- Combinators

translate ::Vec -> Shape -> Shape
scale ::Vec -> Shape -> Shape
rotate :: Angle -> Shape -> Shape
union :: Shape -> Shape -> Shape
intersect :: Shape -> Shape -> Shape

difference :: Shape -> Shape -> Shape
-- Run functions
inside  :: Point -> Shape -> Bool

Side track: A matrix library

type Matrix
type Vector
type Point

-- Constructor functions

point :: Double -> Double -> Point

vec :: Double -> Double -> Vec

matrix :: Double -> Double -> Double -> Double -> Matrix
-- Combinators

mulPt :: Matrix -> Point -> Point

mulVec :: Matrix -> Vec -> Vec

inv 1 Matrix -> Matrix -

subtract :: Point -> Vec -> Point @

-- Run functions
ptX, ptY :: Point-> Double A
vecX, vecY :: Vec -> Double pzrg?gs%l;'.'

Shallow embedding, cont.

 If we picked the right implementation
the operations should now be easy to

Im p I em ent pomt lnstea ! te
il
empty = Shape $ \p -> False
disc =Shape$\p->ptXp ~2+ptYp "~ 2<=1
square = Shape $ \p -> abs (ptX p) <= 1 && abs (ptY p) <=1
transform m a = Shape $ \p -> mulPt (inv m) p “inside a
translate va = Shape $ \p -> subtract p v “inside” a
union a b = Shape $ \p -> inside p a || inside p b
intersectab = Shape $ \p -> inside p a && inside p b
invert a = Shape $ \p -> not (inside p a)



Deep embedding

* Representation is easy, just make a
datatype of the primitive operations

data Shape where -- using Gen. Alg. DataType syntax
-- Constructor functions
Empty :: Shape
Disc :: Shape
Square :: Shape
-- Combinators
Translate ::Vec-> Shape -> Shape
Transform :: Matrix -> Shape -> Shape

Union :: Shape -> Shape -> Shape
Intersect :: Shape -> Shape -> Shape
Invert :: Shape -> Shape

empty = Empty; disc = Disc; ...

Deep embedding, cont.

+ All the work happens in the run function:

inside :: Point -> Shape -> Bool

p ‘inside’ Empty = False

p “inside” Disc =ptXp"2+ptYp~2 <=1

p “inside” Square = abs (ptX p) <=1 && abs (ptY p) <=1
p “inside’ Translate v a = subtract p v “inside” a

p ‘inside” Transformm a = mulPt (inv m) p “inside” a

p ‘inside’ Union a b =inside pa || inside pb

p ‘inside’ Intersect a b = inside p a && inside p b

p ‘inside’ Invert a = not (inside p a)

More interesting run function:
render to ASCll-art

module Render where
import Shape

data Window = Window
{bottomLeft :: Point
, topRight :: Point
, resolution 22 (Int, Int)

}

defaultWindow :: Window
pixels :: Window -> [[Point]]

render :: Window -> Shape -> String
render win a = unlines $ map (concatMap putPixel) (pixels win)
where
putPixel p | p “inside” a
| otherwise

apym

w n

Deep embedding

* ... the same datatype without GADT
notation:

data Shape = Empty | Disc | Square

Translate Vec Shape

Transform Matrix Shape

Union Shape Shape | Intersect Shape Shape
Invert Shape

empty = Empty
disc = Disc
translate = Translate
transform = Transform

union = Union
intersect = Intersect
invert = Invert

Abstﬁaction!

module Shape /’// |
( module Matrix~_
, Shape ——— T—__

, empty, disc, square
, translate, transform, scale, rotate
, union, intersect, difference, invert

, inside
) where -
import Matrix - SN
b == ’\/ﬁ\\/f\'\/\\\,

v em aing.
difference to the user!

Some action

module Animate where
import Shape

import Render

import Signal

animate :: Window -> Time -> Time -> Signal Shape -> 10 ()

* Go live!



Discussion Summary

« Difierent kinds ofioperations
. Adding coloured shapes — constructor functions / combinators / run functions

—Go back and discuss what changes - primitive / derived
would need to be made * Implementation styles

. Bad shallow implementations — Shallow - represent.ation. given by sem.antics
. . — Deep - representation given by operations
— Looking at the render run function we R b
might decide to go for emem. .er _
newtype Shape = Shape (Window -> String) B CompOSI_tlona“ty
. . . — Abstraction
— Discuss the problems with this

implementation
» Other questions/comments..?



