Advanced Functional Programming TDA342/DIT260

Patrik Jansson, Dan Rosén, Jonas Duregård

2014-03-11

Contact: Patrik Jansson, ext 5415, Dan Rosén, ext 1741.
Result: Announced no later than 2014-03-30

Exam check: Mo 2014-03-31 and Tu 2014-04-01. Both at 12.45-13.10 in EDIT 5468.
Aids: \quad You may bring up to two pages (on one A4 sheet of paper) of pre-written notes - a "summary sheet". These notes may be typed or handwritten. They may be from any source. If this summary sheet is brought to the exam it must also be handed in with the exam (so make a copy if you want to keep it).

Grades: Chalmers: 3: $24 \mathrm{p}, 4: 36 \mathrm{p}, 5: 48 \mathrm{p}$, max: 60p
GU: G: $24 \mathrm{p}, \mathrm{VG}: 48 \mathrm{p}$
PhD student: 36 p to pass

Remember: Write legibly.
Don't write on the back of the paper.
Start each problem on a new sheet of paper.
Hand in the summary sheet (if you brought one) with the exam solutions.

Problem 1: Types: read, understand and extend Haskell programs which use advanced type system features

You have seen the standard Haskell definition of Monad in the course. Let's repeat the core of it here, and call it Monad1 to be able to differentiate between it and another version below:

```
class Monad1 m}\mathrm{ where
    return :: a->ma
    (>>) ::ma->(a->mb) ->mb
```

In this task, you will show that another definition is just as expressive. It uses join as primitive instead of bind (>>), and it has a Functor constraint. We will call this class Monad2:

```
class Functor \(m \Rightarrow\) Monad2 \(m\) where
    return :: \(a \rightarrow m a\)
    join \(\quad:: m(m a) \rightarrow m a\)
```

(a) Without using do-notation, implement bind using this new monad definition:

$$
\begin{aligned}
& (\gg):: \text { Monad2 } m \Rightarrow m a \rightarrow(a \rightarrow m b) \rightarrow m b \\
& (\gg)=?
\end{aligned}
$$

Hint: Every Monad2 is also a Functor!
(b) Implement join1 using the standard monad definition:
join1 $::$ Monad1 $m \Rightarrow m(m a) \rightarrow m a$
join $1=$?
Again, don't use do-notation.
If Monad2 was how monads were defined in Haskell, the instances could also look a bit different.
(c) Finish this Maybe instance of Monad2 by implementing join:

```
instance Monad2 Maybe where
    return \(=\) Just
    join \(=\) ?
```

Do it in this setting's most straightforward way (i.e. don't go via an implementation of ($\ggg)$).
(d) Finish this State instance of Monad2 by implementing fmap and join:

```
newtype State s \(a=\) State \(\{\) runState \(:: s \rightarrow(a, s)\}\)
instance Functor (State s) where
    fmap \(=\) ?
instance Monad2 (State s) where
    return \(a=\) State \(\$ \lambda s \rightarrow(a, s)\)
    join \(=\) ?
```

Again, do it in the most straightforward way for this setting.

Problem 2: Spec: use specification based development techniques

This problem continues the previous problem's adventure about monads in terms of join.
Note: Even if you have not solved problem 1 you can still try to solve this problem.
The monad laws can also be expressed in terms of join, fmap and return:
Units: $\quad j o i n \circ$ return $=i d=j o i n \circ$ fmap return
Associativity: \quad join \circ fmap join $=j o i n \circ j o i n$
(a) What is the type of fmap return at the use site in the units law and what is the type of the rightmost join in the associativity law?
(b) Now, consider this implementation of the writer monad:

```
instance Functor \((() w\),\() where\)
    fmap \(f(w, a)=(w, f a)\)
instance Monoid \(w \Rightarrow\) Monad2 ((, ) w) where
    return \(a \quad=(\varnothing \quad, a)\)
    \(j \operatorname{join}\left(w,\left(w^{\prime}, a\right)\right)=\left(w \diamond w^{\prime}, a\right)\)
```

Here, for brevity, we write \varnothing for mempty and \diamond for mappend just as in the appendix. The notation $(() w$,$) is a partial application of the pair type constructor. For example, ((() w) a$,$) is the same$ type as (w, a).
Show the above unit and associativity laws for this writer monad by equational reasoning.

Problem 3: DSL: implement embedded domain specific languages
This is a simple API for digital circuits of type C :

```
data C -- To be defined
    -- Primitive operations
inv :: C->C -- inverter ("not"-gate)
ands :: [C]->C -- "and"-gate with zero or more inputs and one output
delay :: C->C -- delay the output one step
    -- Derived operations
ors :: [C]->C -- "or"-gate with zero or more inputs and one output
xor :: C->C->C -- binary "xor"-gate
false, true, toggle :: C
    -- Run functions
run :: C->[Bool]
show :: C }->\mathrm{ String
```

The run function should return an infinite list of booleans representing the logic outputs of the circuit for all time steps. Here is a selection of the properties it should satisfy:

```
prop_inv ic c=run (inv c)!! i \equiv三 run c!! i
prop_delay0 c = not(run (delay c) !! 0)
prop_delay i c = run (delay c)!! (i+1) == run c !! i
prop_true i = run true !! i
prop_toggle i = run toggle !! i== (i`mod` 2 == 1)
```

(a) Implement the derived operations while keeping the type C abstract.
(b) Implement the type C, the primitive operations and run using a deep embedding.

A Library documentation

A. 1 Monoids

```
class Monoid a where
    mempty :: a
    mappend \(:: a \rightarrow a \rightarrow a\)
```

Monoid laws (variables are implicitly quantified, and we write \varnothing for mempty and (\diamond) for mappend):

$$
\begin{aligned}
& \varnothing \diamond m==m==m \diamond \varnothing \\
& \left(m_{1} \diamond m_{2}\right) \diamond m_{3}==m_{1} \diamond\left(m_{2} \diamond m_{3}\right)
\end{aligned}
$$

Example: lists form a monoid:

$$
\begin{aligned}
\text { instance Monoid } & {[a] \text { where } } \\
& =[] \\
\text { mempty } & =x \text { mppend } x s \text { ys }
\end{aligned}=x s+y s
$$

A. 2 Monads and monad transformers

class Monad m where
return $:: a \rightarrow m a$
$(\gg):: m a \rightarrow(a \rightarrow m b) \rightarrow m b$
fail :: String $\rightarrow m a$
class Monad $m \Rightarrow$ MonadPlus m where
mzero :: ma
mplus $:: m a \rightarrow m a \rightarrow m a$

Reader monads

type ReaderT e ma
runReader T :: Reader T e $m a \rightarrow e \rightarrow m a$
class Monad $m \Rightarrow$ MonadReader e $m \mid m \rightarrow e$ where

$$
\text { ask }:: m e \quad \text {-- Get the environment }
$$

local $::(e \rightarrow e) \rightarrow m a \rightarrow m a \quad$-- Change the environment locally

Writer monads

State monads

type StateT s ma
type State $s \quad a$
runState $T::$ StateT $s m a \rightarrow s \rightarrow m(a, s)$
runState :: State $\quad s \quad a \rightarrow s \rightarrow \quad(a, s)$
class Monad $m \Rightarrow$ MonadState $s m \mid m \rightarrow s$ where
get :: m s
-- Get the current state
put :: $s \rightarrow m()$
-- Set the current state
state $::(s \rightarrow(a, s)) \rightarrow m a \quad$-- Embed a simple state action into the monad

Error monads

type ErrorT e ma
runError T :: ErrorT e $m a \rightarrow m$ (Either e a)
class Monad $m \Rightarrow$ MonadError e $m \mid m \rightarrow e$ where
throwError :: $e \rightarrow m a \quad$-- Throw an error
catchError :: ma $\rightarrow(e \rightarrow m a) \rightarrow m a \quad$-- In catchError $x h$ if x throws an error,
-- it is caught and handled by h.

A. 3 Some QuickCheck

-- Create Testable properties:
-- Boolean expressions: $(\wedge),(\mid)$, not, \ldots
$(==>)::$ Testable $p \Rightarrow$ Bool $\rightarrow p \rightarrow$ Property
forAll :: (Show a, Testable $p) \Rightarrow$ Gen $a \rightarrow(a \rightarrow p) \rightarrow$ Property
-- ... and functions returning Testable properties
-- Run tests:
quickCheck :: Testable prop \Rightarrow prop $\rightarrow I O()$
-- Measure the test case distribution:
collect :: (Show a, Testable p) $\Rightarrow a \quad \rightarrow p \rightarrow$ Property
label :: Testable $p \Rightarrow \quad$ String $\rightarrow p \rightarrow$ Property
classify :: Testable $p \Rightarrow$ Bool \rightarrow String $\rightarrow p \rightarrow$ Property
collect $x=$ label $($ show $x)$
label $s=$ classify True s
-- Create generators:
choose $\quad::$ Random $a \Rightarrow(a, a) \rightarrow$ Gen a
elements :: $[a] \quad \rightarrow$ Gen a
oneof $::\left[\begin{array}{lll}\text { Gen } a\end{array}\right] \quad \rightarrow$ Gen a
frequency :: [(Int, Gen a)] \rightarrow Gen a
sized $\quad::($ Int \rightarrow Gen $a) \quad \rightarrow$ Gen a
sequence $::[$ Gen $a] \quad \rightarrow$ Gen $[a]$
vector $\quad::$ Arbitrary $a \Rightarrow$ Int \rightarrow Gen $[a]$
arbitrary $::$ Arbitrary $a \Rightarrow \quad$ Gen a
fmap $\quad::(a \rightarrow b) \rightarrow$ Gen $a \rightarrow$ Gen b
instance Monad (Gen a) where ...
-- Arbitrary - a class for generators
class Arbitrary a where
arbitrary :: Gen a
shrink $\quad:: a \rightarrow[a]$

