
Advanced Functional Programming TDA342/DIT260

Patrik Jansson

2013-03-16

Contact: Patrik Jansson, ext 5415. Will answer questions after 1 and after 3 hours.

Result: Announced no later than 2013-04-05

Exam check: Mo 2013-04-08 and We 2013-04-10. Both at 12.45-13.10 in EDIT 5468.

Aids: You may bring up to two pages (on one A4 sheet of paper) of pre-written notes
- a “summary sheet”. These notes may be typed or handwritten. They may
be from any source. If this summary sheet is brought to the exam it must also
be handed in with the exam (so make a copy if you want to keep it).

Grades: Chalmers: 3: 24p, 4: 36p, 5: 48p, max: 60p
GU: G: 24p, VG: 48p, max: 60p
PhD student: 36p to pass, max: 60p

Remember: Read the full exam before starting (perhaps the easy stuff is near the end).
Hand in the summary sheet (if you brought one) with the exam solutions.
Start each problem on a new sheet of paper.
Don’t write on the back of the paper.
Write legibly.
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Problem 1: Spec: use specification based development techniques(18 p)

(a) Imagine you should test an implementation of a function sort ::Ord a ⇒ [a ]→ [a ]. Implement(7 p)
a QuickCheck property which checks that the result is ordered and a permutation of the input.

(b) Explain what “pure” (referentially transparent) means in a functional programming context(5 p)
and how it relates to equational reasoning.

(c) Even though list concatenation is associative, that is lhs (as ++ bs) ++ cs as ++ (bs ++ cs)(6 p)
rhs, it may still be good for performance to transform lhs to rhs. Explain why by expanding
head lhs and head rhs. You may assume that only case distinctions (pattern matching) takes time
and that as contains at least one element.

(++) :: [a ]→ [a ]→ [a ]
xs ++ ys = case xs of

[ ] → ys -- ++.1
(x : xs ′)→ x : (xs ′ ++ ys) -- ++.2

Problem 2: DSL: design embedded domain specific languages(22 p)

A DSL for symbolic algebra. The Num, Fractional and Floating classes in Haskell provide
an API for several mathematical operations and the standard library provides instances for several
base types like integers, floating point numbers and rationals. Your task here is to implement a
DSL for symbolic expressions for the following subset of this API:

class (Eq a,Show a)⇒ Num a where
(+), (∗) :: a → a → a
negate :: a → a
fromInteger :: Integer → a

class (Num a)⇒ Fractional a where
(/) :: a → a → a

class (Fractional a)⇒ Floating a where
pi :: a
exp, log :: a → a
sin, cos :: a → a

(a) Implement a type Sym v as a deep embedding of the API & symbolic variables of type v .(5 p)

(b) Implement parts of a run function eval ::Floating n ⇒ (v → Maybe n)→ Sym v → Maybe n.(5 p)
It is enough to implement the cases for variables, (+), negate, fromInteger , (/) and exp.

(c) Implement an algebraic simplification function simp :: Sym v → Maybe (Sym v) which applies(7 p)
the rules 0 ∗ e 0, sin pi 0, log (exp e) e bottom-up and which fails (with Nothing) on
division by zero.

(d) Is there a reasonable Monad instance for Sym? If so, implement return and sketch (>>=),(5 p)
otherwise explain why not.

2



Problem 3: Types: read, understand and extend Haskell programs (20 p)

A generalised trie for a type k is a parametrised datatype used to store a lookup table representing
a partial function from k to some value type. (The term “partial function” here means “a function
returning Maybe a”.) The following code (from the Haskell wiki page on type families) implements
generalised tries for finite types built from units, sums and pairs.

class GMapKey k where
data GMap k :: ∗ → ∗
empty :: GMap k v
lookup :: k → GMap k v → Maybe v
insert :: k → v → GMap k v → GMap k v

instance GMapKey () where
data GMap () v = GMU (Maybe v)
empty = GMU Nothing
lookup () (GMU mv) = mv
insert () v (GMU ) = GMU $ Just v

instance (GMapKey a,GMapKey b)⇒ GMapKey (Either a b) where
data GMap (Either a b) v = GME (GMap a v) (GMap b v)
empty = GME empty empty
lookup (Left a) (GME gm1 gm2 ) = lookup a gm1
lookup (Right b) (GME gm1 gm2 ) = lookup b gm2
insert (Left a) v (GME gm1 gm2 ) = GME (insert a v gm1 ) gm2
insert (Right a) v (GME gm1 gm2 ) = GME gm1 (insert a v gm2 )

instance (GMapKey a,GMapKey b)⇒ GMapKey (a, b) where
data GMap (a, b) v = GMP (GMap a (GMap b v))
empty = GMP empty
lookup (a, b) (GMP gm) = lookupGMP a b gm -- TODO
insert (a, b) v (GMP gm) = GMP (insertGMP a b v gm) -- TODO

Some examples to get a feeling for how it works:

type Bit = Either () ()
o = Left (); i = Right ()

type Four = (Bit ,Bit)
oo = (o, o); oi = (o, i); io = (i , o); ii = (i , i)

t0 , t1 , t2 :: GMap Four Int -- ' (Maybe (Maybe Int ,Maybe Int),Maybe (Maybe Int ,Maybe Int))
t0 = empty -- ' (Nothing ,Nothing)
t1 = insert oi 17 t0 -- ' (Just (Nothing , Just 17),Nothing)
t2 = insert io 38 t1 -- ' (Just (Nothing , Just 17), Just (Just 38,Nothing))

(a) Fully expand the type family application GMap (Either () (Bit , a)) v . You may ignore the (4 p)
constructors GMU , GME and GMP as I did in the comment after type signature for t0 .

(b) Give the type signatures for and implement lookupGMP and insertGMP . (6 p)

(c) Here are the Functor instances for GMap (), GMap (Either a b) and GMap (a, b): (10 p)

instance Functor (GMap ()) where
fmap = fmapGMU -- TODO

instance (Functor (GMap a),Functor (GMap b))⇒ Functor (GMap (Either a b)) where
fmap = fmapGME -- TODO

instance (Functor (GMap a),Functor (GMap b))⇒ Functor (GMap (a, b)) where
fmap = fmapGMP -- TODO

Give type signatures for and implement fmapGMU , fmapGME and fmapGMP .
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A Library documentation

A.1 Monoids

class Monoid a where
mempty :: a
mappend :: a → a → a

Monoid laws (variables are implicitly quantified, and we write 0 for mempty and (+) for mappend):

0 + m m
m + 0 m
(m1 + m2) + m3 m1 + (m2 + m3)

Example: lists form a monoid:

instance Monoid [a ] where
mempty = [ ]
mappend xs ys = xs ++ ys

A.2 Monads and monad transformers

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b
fail :: String → m a

class MonadTrans t where
lift :: Monad m ⇒ m a → t m a

class Monad m ⇒ MonadPlus m where
mzero :: m a
mplus :: m a → m a → m a

Reader monads

type ReaderT e m a
runReaderT :: ReaderT e m a → e → m a

class Monad m ⇒ MonadReader e m | m → e where
-- Get the environment

ask :: m e
-- Change the environment locally

local :: (e → e)→ m a → m a

Writer monads

type WriterT w m a
runWriterT :: WriterT w m a → m (a,w)

class (Monad m,Monoid w)⇒ MonadWriter w m | m → w where
-- Output something

tell :: w → m ()
-- Listen to the outputs of a computation.

listen :: m a → m (a,w)
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State monads

type StateT s m a
runStateT :: StateT s m a → s → m (a, s)

class Monad m ⇒ MonadState s m | m → s where
-- Get the current state

get :: m s
-- Set the current state

put :: s → m ()

Error monads

type ErrorT e m a
runErrorT :: ErrorT e m a → m (Either e a)

class Monad m ⇒ MonadError e m | m → e where
-- Throw an error

throwError :: e → m a

-- If the first computation throws an error, it is
-- caught and given to the second argument.

catchError :: m a → (e → m a)→ m a

A.3 Some QuickCheck

-- Create Testable properties:
-- Boolean expressions: (∧), (|), ¬, ...

(==>) :: Testable p ⇒ Bool → p → Property
forAll :: (Show a,Testable p)⇒ Gen a → (a → p)→ Property

-- ... and functions returning Testable properties

-- Run tests:
quickCheck :: Testable prop ⇒ prop → IO ()

-- Measure the test case distribution:
collect :: (Show a,Testable p)⇒ a → p → Property
label :: Testable p ⇒ String → p → Property
classify :: Testable p ⇒ Bool → String → p → Property

collect x = label (show x )
label s = classify True s

-- Create generators:
choose :: Random a ⇒ (a, a)→ Gen a
elements :: [a ] → Gen a
oneof :: [Gen a ] → Gen a
frequency :: [(Int ,Gen a)] → Gen a
sized :: (Int → Gen a) → Gen a
sequence :: [Gen a ] → Gen [a ]
vector :: Arbitrary a ⇒ Int → Gen [a ]
arbitrary :: Arbitrary a ⇒ Gen a
fmap :: (a → b)→ Gen a → Gen b
instance Monad (Gen a) where ...

-- Arbitrary — a class for generators
class Arbitrary a where
arbitrary :: Gen a
shrink :: a → [a ]
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