Advanced Functional Programming TDA342/DIT260

Patrik Jansson

2013-03-16

Contact: Patrik Jansson, ext 5415. Will answer questions after 1 and after 3 hours.
Result: Announced no later than 2013-04-05
Exam check: Mo 2013-04-08 and We 2013-04-10. Both at 12.45-13.10 in EDIT 5468.
Aids: You may bring up to two pages (on one A4 sheet of paper) of pre-written notes - a "summary sheet". These notes may be typed or handwritten. They may be from any source. If this summary sheet is brought to the exam it must also be handed in with the exam (so make a copy if you want to keep it).

Grades: Chalmers: 3: $24 \mathrm{p}, 4: 36 \mathrm{p}, 5: 48 \mathrm{p}$, max: 60p
GU: G: 24p, VG: 48p, max: 60p
PhD student: 36 p to pass, max: 60p

Remember: Read the full exam before starting (perhaps the easy stuff is near the end). Hand in the summary sheet (if you brought one) with the exam solutions. Start each problem on a new sheet of paper.
Don't write on the back of the paper.
Write legibly.

Problem 2: DSL: design embedded domain specific languages

A DSL for symbolic algebra. The Num, Fractional and Floating classes in Haskell provide an API for several mathematical operations and the standard library provides instances for several base types like integers, floating point numbers and rationals. Your task here is to implement a DSL for symbolic expressions for the following subset of this API:

```
class \((E q a\), Show \(a) \Rightarrow\) Num \(a\) where
    \((+),(*) \quad:: a \rightarrow a \rightarrow a\)
    negate \(\quad:: a \rightarrow a\)
    fromInteger :: Integer \(\rightarrow a\)
class \((\) Num \(a) \Rightarrow\) Fractional a where
    (/) :: \(a \rightarrow a \rightarrow a\)
class (Fractional a) \(\Rightarrow\) Floating \(a\) where
    pi :: \(a\)
    exp, log \(\quad:: a \rightarrow a\)
    \(\sin , \cos \quad:: a \rightarrow a\)
```

(a) Implement a type Sym v as a deep embedding of the API \& symbolic variables of type v.
(b) Implement parts of a run function eval :: Floating $n \Rightarrow(v \rightarrow$ Maybe $n) \rightarrow$ Sym $v \rightarrow$ Maybe n. It is enough to implement the cases for variables, $(+)$, negate, fromInteger, (/) and exp.
(c) Implement an algebraic simplification function simp :: Sym $v \rightarrow$ Maybe (Sym v) which applies the rules $0 * e=0$, sin $p i==0, \log (\exp e)==e$ bottom-up and which fails (with Nothing) on division by zero.
(d) Is there a reasonable Monad instance for Sym? If so, implement return and sketch (\gg), otherwise explain why not.

Problem 3: Types: read, understand and extend Haskell programs

A generalised trie for a type k is a parametrised datatype used to store a lookup table representing a partial function from k to some value type. (The term "partial function" here means "a function returning Maybe a ".) The following code (from the Haskell wiki page on type families) implements generalised tries for finite types built from units, sums and pairs.

```
class GMapKey \(k\) where
    data GMap \(k:: * \rightarrow *\)
    empty :: GMap \(k v\)
    lookup \(:: k \rightarrow\) GMap \(k v \rightarrow\) Maybe \(v\)
    insert \(:: k \rightarrow v \rightarrow\) GMap \(k v \rightarrow\) GMap \(k v\)
instance GMapKey () where
    data \(G M a p() v=G M U(\) Maybe \(v)\)
    empty \(\quad=\) GMU Nothing
    lookup () (GMU mv) \(=m v\)
    insert () v (GMU _) \(=\) GMU \$ Just v
instance (GMapKey a, GMapKey b) \(\Rightarrow\) GMapKey (Either a b) where
    data GMap (Either ab) v=GME (GMap a v) (GMap b v)
    empty = GME empty empty
    lookup (Left a) (GME gm1 _gm2) = lookup a gm1
    lookup (Right b) (GME _gm1 gm2) = lookup b gm2
    insert \((\) Left a) \(\quad v(G M E\) gm1 gm2 \()=G M E(\) insert a vgm1) gm2
    insert \((\) Right a) \(v(\) GME gm1 gm2 \()=G M E\) gm1 (insert a v gm2)
instance (GMapKey \(a\), GMapKey b) \(\Rightarrow\) GMapKey \((a, b)\) where
    data \(\operatorname{GMap}(a, b) v=G M P(G M a p a(G M a p ~ b v))\)
    empty \(=\) GMP empty
    lookup \((a, b)(G M P g m)=\) lookupGMP \(a b\) gm -- TODO
    insert \((a, b) v(G M P g m)=G M P(\) insertGMP \(a b v g m) \quad\)-- TODO
```

Some examples to get a feeling for how it works:
type Bit $=$ Either ()()
$o=\operatorname{Left}() ; i=\operatorname{Right}()$
type Four $=($ Bit, Bit $)$
$o o=(o, o) ; o i=(o, i) ; i o=(i, o) ; i i=(i, i)$
t0, t1, t2 :: GMap Four Int $--\simeq$ (Maybe (Maybe Int, Maybe Int), Maybe (Maybe Int, Maybe Int))
$t 0=$ empty $\quad--\simeq$ (Nothing, Nothing $)$
$t 1=$ insert oi 17 t0 $--\simeq($ Just (Nothing, Just 17), Nothing)
t2 $=$ insert io 38 t1 $--\simeq($ Just (Nothing, Just 17), Just (Just 38, Nothing) $)$
(a) Fully expand the type family application GMap (Either () (Bit, a)) v. You may ignore the (4 p) constructors $G M U, G M E$ and $G M P$ as I did in the comment after type signature for $t 0$.
(b) Give the type signatures for and implement lookupGMP and insertGMP.
(c) Here are the Functor instances for GMap (), GMap (Either a b) and GMap (a, b):

```
instance Functor (GMap ()) where
    fmap \(=\) fmapGMU \(\quad-\) TODO
instance (Functor (GMap a), Functor (GMap b)) \(\Rightarrow\) Functor (GMap (Either a b)) where
    fmap \(=\) fmapGME \(\quad-\) TODO
instance (Functor (GMap a), Functor (GMap b)) \(\Rightarrow\) Functor \((G M a p(a, b))\) where
    fmap \(=\) fmapGMP \(\quad-\) TODO
```

Give type signatures for and implement fmapGMU, fmapGME and fmapGMP.

A Library documentation

A. 1 Monoids

class Monoid a where
mempty :: a
mappend $:: a \rightarrow a \rightarrow a$

Monoid laws (variables are implicitly quantified, and we write 0 for mempty and (+) for mappend):

$$
\begin{aligned}
& 0+m==m \\
& m+0==m \\
& \left(m_{1}+m_{2}\right)+m_{3}==m_{1}+\left(m_{2}+m_{3}\right)
\end{aligned}
$$

Example: lists form a monoid:

```
instance Monoid [a] where
    mempty = []
    mappend xs ys =xs + ys
```


A. 2 Monads and monad transformers

```
class Monad \(m\) where
    return \(:: a \rightarrow m a\)
    \((\gg):: m a \rightarrow(a \rightarrow m b) \rightarrow m b\)
    fail \(\quad::\) String \(\rightarrow m a\)
class MonadTrans \(t\) where
    lift : : Monad \(m \Rightarrow m a \rightarrow t m a\)
class Monad \(m \Rightarrow\) MonadPlus \(m\) where
    mzero :: ma
    mplus :: ma \(\rightarrow\) ma \(a\) ma
```


Reader monads

```
type ReaderT e m a
runReaderT :: ReaderT e ma->e->ma
class Monad m=> MonadReader e m| m ->e where
    -- Get the environment
    ask :: m e
    -- Change the environment locally
    local :: (e->e)->ma->ma
```


Writer monads

```
type WriterT w ma
runWriterT :: WriterT w ma \(\rightarrow m(a, w)\)
class (Monad \(m\), Monoid \(w) \Rightarrow\) MonadWriter \(w m \mid m \rightarrow w\) where
    -- Output something
    tell \(:: w \rightarrow m()\)
            -- Listen to the outputs of a computation.
    listen \(:: m a \rightarrow m(a, w)\)
```


State monads

```
type StateT s ma
runState \(T\) :: StateT s \(m a \rightarrow s \rightarrow m(a, s)\)
class Monad \(m \Rightarrow\) MonadState \(s m \mid m \rightarrow s\) where
    -- Get the current state
    get :: m s
    -- Set the current state
    put \(:: s \rightarrow m\) ()
```


Error monads

type ErrorT e ma
runErrorT :: ErrorT e ma \rightarrow (Either ea)
class Monad $m \Rightarrow$ MonadError e $m \mid m \rightarrow e$ where
-- Throw an error
throwError : : $e \rightarrow m a$
-- If the first computation throws an error, it is
-- caught and given to the second argument.
catchError $:: m a \rightarrow(e \rightarrow m a) \rightarrow m a$

A. 3 Some QuickCheck

-- Create Testable properties:
-- Boolean expressions: $(\wedge),(\mid), \neg, \ldots$
(==>) :: Testable $p \Rightarrow$ Bool $\rightarrow p \rightarrow$ Property
forAll :: (Show a, Testable $p) \Rightarrow$ Gen $a \rightarrow(a \rightarrow p) \rightarrow$ Property
-- ... and functions returning Testable properties
-- Run tests:
quickCheck :: Testable prop \Rightarrow prop $\rightarrow I O$ ()
-- Measure the test case distribution:
collect $::($ Show a, Testable $p) \Rightarrow a \quad \rightarrow p \rightarrow$ Property
label :: Testable $p \Rightarrow \quad$ String $\rightarrow p \rightarrow$ Property
classify :: Testable $p \Rightarrow$ Bool \rightarrow String $\rightarrow p \rightarrow$ Property
collect $x=$ label (show x)
label $s=$ classify True s
-- Create generators:
choose $\quad::$ Random $a \Rightarrow(a, a) \rightarrow$ Gen a
elements :: $[a] \quad \rightarrow$ Gen a
oneof $::\left[\begin{array}{lll}\text { Gen } a]\end{array} \rightarrow\right.$ Gen a
frequency :: [(Int, Gen a)] \rightarrow Gen a
sized $\quad::($ Int \rightarrow Gen $a) \quad \rightarrow$ Gen a
sequence $::[$ Gen $a] \quad \rightarrow$ Gen $[a]$
vector $\quad::$ Arbitrary $a \Rightarrow$ Int \rightarrow Gen $[a]$
arbitrary :: Arbitrary $a \Rightarrow \quad$ Gen a
fmap $\quad::(a \rightarrow b) \rightarrow$ Gen $a \rightarrow$ Gen b
instance Monad (Gen a) where ...
-- Arbitrary - a class for generators
class Arbitrary a where
arbitrary :: Gen a
shrink $\quad:: a \rightarrow[a]$

