
Advanced Functional Programming TDA342/DIT260

Patrik Jansson

2013-08-26

Contact: Patrik Jansson, ext 5415.

Result: Announced no later than 2013-09-13

Exam check: Th 2013-09-19 and Fr 2013-09-20. Both at 12.45-13.10 in EDIT 5468.

Aids: You may bring up to two pages (on one A4 sheet of paper) of pre-written notes
- a “summary sheet”. These notes may be typed or handwritten. They may
be from any source. If this summary sheet is brought to the exam it must also
be handed in with the exam (so make a copy if you want to keep it).

Grades: Chalmers: 3: 24p, 4: 36p, 5: 48p, max: 60p
GU: G: 24p, VG: 48p
PhD student: 36p to pass

Remember: Write legibly.
Don’t write on the back of the paper.
Start each problem on a new sheet of paper.
Hand in the summary sheet (if you brought one) with the exam solutions.

1

Problem 1: DSL: implement embedded domain specific languages(20 p)

Part of the QuickCheck library is a domain specific language for expressing Generators of pseudo-
random values. Your task is to implement a simplified version of this DSL. You don’t need to
handle sized generators, infinite values, exception handling or the Property part of QuickCheck.
You only need to implement these operations:

elements :: [a] → Gen a
oneof :: [Gen a] → Gen a
frequency :: [(Int ,Gen a)] → Gen a
sequence :: [Gen a] → Gen [a]
returnGen :: a → Gen a
bindGen :: Gen a → (a → Gen b)→ Gen b
fmapGen :: (a → b)→ Gen a → Gen b

-- A call to run g n r gives n (pseudo-)random values from the
-- generator g using the (pseudo-)random source r .

run :: Gen a → Int → StdGen → [a]

instance Functor (Gen a) where fmap = fmapGen
instance Monad (Gen a) where return = returnGen; (>>=) = bindGen

(a) The operations elements, oneof , sequence and fmapGen are derived operations, that is, they(10 p)
can be implemented in terms of the other operations without knowing the implementation of Gen.
Show how. (You must treat Gen as an abstract type for this subproblem.)

(b) Implement Gen, the remaining operations (frequency , returnGen, bindGen) and run.(10 p)

You can assume this is in scope:

import Control .Monad .State as CMS
import System.Random (StdGen,next)

type Sem a = CMS .State StdGen a

-- nextBoundedBy bound for 0< bound returns a random result 0 6 result < bound
nextBoundedBy :: Int → Sem Int

or, alternatively, you could build your solution around

randomR :: Random a ⇒ (a, a)→ StdGen → (a,StdGen)

which takes “a range (lo, hi) and a random number generator r , and returns a random value
uniformly distributed in the closed interval [lo, hi], together with a new generator.” (Quote from
System.Random.)

Problem 2: Types: read, understand and extend Haskell programs which
use advanced type system features(20 p)

-- file: RealWorldHaskell/ch18/CountEntriesT.hs
module CountEntriesT (listDirectory , countEntries) where

import System.Directory (doesDirectoryExist , getDirectoryContents)
import System.FilePath ((</>))
import Control .Monad (forM ,when, liftM)
import Control .Monad .Trans (liftIO)
import Control .Monad .Writer (WriterT , tell , execWriterT)

listDirectory :: FilePath → IO [String]
listDirectory = liftM (filter notDots) ◦ getDirectoryContents

where notDots p = p 6 "." ∧ p 6 ".."

2

countEntries :: FilePath →WriterT [(FilePath, Int)] IO ()
countEntries path = do

contents ← liftIO ◦ listDirectory $ path
tell [(path, length contents)]
forM contents $ λname → do
let newName = path </>name
isDir ← liftIO ◦ doesDirectoryExist $ newName
when isDir $ countEntries newName

(a) A directory T has two subdirectories A and D which in turn contain files called B, C (in A) and (10 p)
E (in D). What is printed when execWriterT (countEntries "T")>>= print is run? Explain!

(b) Implement a variant so that countEntriesMax n fp recurses no deeper than n levels. (10 p)

Problem 3: Spec: use specification based development techniques (20 p)

This is the parser DSL interface from lecture 4:

symbol :: P s s
pfail :: P s a
(+++) :: P s a → P s a → P s a
return :: a → P s a
(>>=) :: P s a → (a → P s b)→ P s b

The semantics of a parser of type P s a is a function from a string of s to a multiset of results
paired with the remaining parts of the input string. We use a multiset to capture the fact that
we don’t care about the order of the results.

The semantic function sem is specified as follows (we use list notation to denote multisets and
(\/) for multiset union).

sem :: P s a → [s]→ [(a, [s])]
sem symbol (s : ss) = [(s, ss)] -- sem.sym.1
sem symbol [] = [] -- sem.sym.2
sem pfail ss = [] -- sem.pfail
sem (p +++ q) ss = sem p ss \/ sem q ss -- sem.+++
sem (return x) ss = [(x , ss)] -- sem.ret
sem (p >>= f) ss = [(y , ss ′′) | (x , ss ′) ← sem p ss

, (y , ss ′′)← sem (f x) ss ′ -- sem.bind
]

Using this semantics it is possible to prove a number of useful laws about parsers and the laws can
be used to derive an efficient implementation of the library. For two parsers p and q we define

p q iff ∀ss . sem p ss sem q ss

Some parsing laws and lemmas:

L5 : (p +++ q)>>= f (p >>= f) +++(q >>= f)
L10 : (symbol >>= f) +++(symbol >>= g) symbol >>= (λs → f s +++ g s)
Lemma1 : sem (symbol >>= f) (s : ss) = sem (f s) ss
Lemma2 : sem (symbol >>= f) [] = []

You may use the lemmas and the specification of sem in your answers.

(a) What is the value of sem (symbol >> symbol) "(h)"? Prove it by equational reasoning. (10 p)

(b) Prove L10 with equational reasoning for the empty and the non-empty list case. (10 p)

3

A Library documentation

A.1 Monoids

class Monoid a where
mempty :: a
mappend :: a → a → a

Monoid laws (variables are implicitly quantified, and we write 0 for mempty and (+) for mappend):

0 + m m
m + 0 m
(m1 + m2) + m3 m1 + (m2 + m3)

Example: lists form a monoid:

instance Monoid [a] where
mempty = []
mappend xs ys = xs ++ ys

A.2 Monads and monad transformers

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b
fail :: String → m a

class MonadTrans t where
lift :: Monad m ⇒ m a → t m a

class Monad m ⇒ MonadPlus m where
mzero :: m a
mplus :: m a → m a → m a

Reader monads

type ReaderT e m a
runReaderT :: ReaderT e m a → e → m a

class Monad m ⇒ MonadReader e m | m → e where
-- Get the environment

ask :: m e
-- Change the environment locally

local :: (e → e)→ m a → m a

Writer monads

type WriterT w m a
runWriterT :: WriterT w m a → m (a,w)
execWriterT :: (Monad m)⇒WriterT w m a → m w

class (Monad m,Monoid w)⇒ MonadWriter w m | m → w where
-- Output something

tell :: w → m ()
-- Listen to the outputs of a computation.

listen :: m a → m (a,w)

4

State monads

type StateT s m a
type State s a
runStateT :: StateT s m a → s → m (a, s)
runState :: State s a → s → (a, s)

class Monad m ⇒ MonadState s m | m → s where
-- Get the current state

get :: m s
-- Set the current state

put :: s → m ()
-- Embed a simple state action into the monad

state :: (s → (a, s))→ m a

Error monads

type ErrorT e m a
runErrorT :: ErrorT e m a → m (Either e a)

class Monad m ⇒ MonadError e m | m → e where
-- Throw an error

throwError :: e → m a

-- If the first computation throws an error, it is
-- caught and given to the second argument.

catchError :: m a → (e → m a)→ m a

A.3 Some QuickCheck

-- Create Testable properties:
-- Boolean expressions: (∧), (|), ¬, ...

(==>) :: Testable p ⇒ Bool → p → Property
forAll :: (Show a,Testable p)⇒ Gen a → (a → p)→ Property

-- ... and functions returning Testable properties

-- Run tests:
quickCheck :: Testable prop ⇒ prop → IO ()

-- Measure the test case distribution:
collect :: (Show a,Testable p)⇒ a → p → Property
label :: Testable p ⇒ String → p → Property
classify :: Testable p ⇒ Bool → String → p → Property

collect x = label (show x)
label s = classify True s

-- Create generators:
choose :: Random a ⇒ (a, a)→ Gen a
elements :: [a] → Gen a
oneof :: [Gen a] → Gen a
frequency :: [(Int ,Gen a)] → Gen a
sized :: (Int → Gen a) → Gen a
sequence :: [Gen a] → Gen [a]
vector :: Arbitrary a ⇒ Int → Gen [a]
arbitrary :: Arbitrary a ⇒ Gen a

5

fmap :: (a → b)→ Gen a → Gen b
instance Monad (Gen a) where ...

-- Arbitrary — a class for generators
class Arbitrary a where

arbitrary :: Gen a
shrink :: a → [a]

6

