Software Engineering using Formal Methods

Formal Modeling with Linear Temporal Logic

Gerardo Schneider
Wolfgang Ahrendt

15th September 2015

Recapitulation: Formalisation

Formalisation: Syntax, Semantics

Formalisation: Syntax, Semantics, Proving

Formal Verification: Model Checking

Formal Verification: Model Checking

Formal Verification: Model Checking

The Big Picture: Syntax, Semantics, Calculus

Simplest Case: Propositional Logic

Simplest Case: Propositional Logic—Syntax

Syntax of Propositional Logic

Signature

A set of Propositional Variables $\mathcal{P} \quad$ (with typical elements p, q, r, \ldots)

Syntax of Propositional Logic

Signature

A set of Propositional Variables \mathcal{P}
(with typical elements p, q, r, \ldots)

Propositional Connectives

true, false, $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$

Syntax of Propositional Logic

Signature

A set of Propositional Variables \mathcal{P}
(with typical elements p, q, r, \ldots)

Propositional Connectives

true, false, $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$

Set of Propositional Formulas For

- Truth constants true, false and variables \mathcal{P} are formulas
- If ϕ and ψ are formulas then

$$
\neg \phi, \quad \phi \wedge \psi, \quad \phi \vee \psi, \quad \phi \rightarrow \psi, \quad \phi \leftrightarrow \psi
$$

are also formulas

- There are no other formulas (inductive definition)

Remark on Concrete Syntax

	Text book	SpIN	
Negation	\neg	$!$	
Conjunction	\wedge	$\& \&$	
Disjunction	\vee	$\\|$	
Implication	\rightarrow, \supset	\rightarrow	
Equivalence	\leftrightarrow	$<-$	

Remark on Concrete Syntax

	Text book	Spin	
Negation	\neg	$!$	
Conjunction	\wedge	$\& \&$	
Disjunction	\vee	$\\|$	
Implication	\rightarrow, \supset	\rightarrow	
Equivalence	\leftrightarrow	$<-$	

We use mostly the textbook notation Except for tool-specific slides, input files

Propositional Logic Syntax: Examples

Let $\mathcal{P}=\{p, q, r\}$ be the set of propositional variables
Are the following character sequences also propositional formulas?

- true $\rightarrow p$

Propositional Logic Syntax: Examples

Let $\mathcal{P}=\{p, q, r\}$ be the set of propositional variables
Are the following character sequences also propositional formulas?

- true $\rightarrow p$

Propositional Logic Syntax: Examples

Let $\mathcal{P}=\{p, q, r\}$ be the set of propositional variables
Are the following character sequences also propositional formulas?

- true $\rightarrow p$
- $(p(q \wedge r)) \vee p$

Propositional Logic Syntax: Examples

Let $\mathcal{P}=\{p, q, r\}$ be the set of propositional variables
Are the following character sequences also propositional formulas?

- true $\rightarrow p$
- $(p(q \wedge r)) \vee p$

Propositional Logic Syntax: Examples

Let $\mathcal{P}=\{p, q, r\}$ be the set of propositional variables
Are the following character sequences also propositional formulas?

- true $\rightarrow p$
- $(p(q \wedge r)) \vee p$
- $p \rightarrow(q \wedge)$

Propositional Logic Syntax: Examples

Let $\mathcal{P}=\{p, q, r\}$ be the set of propositional variables
Are the following character sequences also propositional formulas?

- true $\rightarrow p$
- $(p(q \wedge r)) \vee p \quad X$
- $p \rightarrow(q \wedge) \times$

Propositional Logic Syntax: Examples

Let $\mathcal{P}=\{p, q, r\}$ be the set of propositional variables
Are the following character sequences also propositional formulas?

- true $\rightarrow p$
- $(p(q \wedge r)) \vee p \quad X$
- $p \rightarrow(q \wedge) \quad x$
- false $\wedge(p \rightarrow(q \wedge r))$

Propositional Logic Syntax: Examples

Let $\mathcal{P}=\{p, q, r\}$ be the set of propositional variables
Are the following character sequences also propositional formulas?

- true $\rightarrow p$
- $(p(q \wedge r)) \vee p \quad X$
- $p \rightarrow(q \wedge) \quad x$
- false $\wedge(p \rightarrow(q \wedge r))$

Simplest Case: Propositional Logic

Simplest Case: Propositional Logic

Semantics of Propositional Logic

Interpretation \mathcal{I}
Assigns a truth value to each propositional variable

$$
\mathcal{I}: \mathcal{P} \rightarrow\{T, F\}
$$

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$
\mathcal{I}: \mathcal{P} \rightarrow\{T, F\}
$$

Example
Let $\mathcal{P}=\{p, q\}$

$$
p \rightarrow(q \rightarrow p)
$$

$$
\begin{array}{lll}
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$
\mathcal{I}: \mathcal{P} \rightarrow\{T, F\}
$$

Example
Let $\mathcal{P}=\{p, q\}$

$$
p \rightarrow(q \rightarrow p)
$$

$$
\begin{array}{lll}
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in each interpretation \mathcal{I}_{i} ?

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$
\mathcal{I}: \mathcal{P} \rightarrow\{T, F\}
$$

Valuation Function

$v a l_{\mathcal{I}}$: Continuation of \mathcal{I} on For $_{0}$

$$
\operatorname{val}_{\mathcal{I}}: \text { Foro } \rightarrow\{T, F\}
$$

$\operatorname{val}_{\mathcal{I}}($ true $)=T$
$v a l_{\mathcal{I}}$ (false) $=F$
$\operatorname{val}_{\mathcal{I}}\left(p_{i}\right)=\mathcal{I}\left(p_{i}\right)$

Semantics of Propositional Logic (Cont'd)

Valuation function (Cont'd)

$\operatorname{val}_{\mathcal{I}}(\neg \phi)= \begin{cases}T & \text { if } \operatorname{val}_{\mathcal{I}}(\phi)=F \\ F & \text { otherwise }\end{cases}$
$\operatorname{val}_{\mathcal{I}}(\phi \wedge \psi)= \begin{cases}T & \text { if } \operatorname{val}_{\mathcal{I}}(\phi)=T \text { and } \operatorname{val}_{\mathcal{I}}(\psi)=T \\ F & \text { otherwise }\end{cases}$
$\operatorname{val}_{\mathcal{I}}(\phi \vee \psi)= \begin{cases}T & \text { if } v a l_{\mathcal{I}}(\phi)=T \text { or } v a l_{\mathcal{I}}(\psi)=T \\ F & \text { otherwise }\end{cases}$
$\operatorname{val}_{\mathcal{I}}(\phi \rightarrow \psi)= \begin{cases}T & \text { if } \operatorname{val}_{\mathcal{I}}(\phi)=F \text { or } \operatorname{val}_{\mathcal{I}}(\psi)=T \\ F & \text { otherwise }\end{cases}$
$\operatorname{val}_{\mathcal{I}}(\phi \leftrightarrow \psi)= \begin{cases}T & \text { if } \operatorname{va} I_{\mathcal{I}}(\phi)=\operatorname{val}_{\mathcal{I}}(\psi) \\ F & \text { otherwise }\end{cases}$

Valuation Examples

Example

Let $\mathcal{P}=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

Valuation Examples

Example
Let $\mathcal{P}=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?
$\operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=$

Valuation Examples

Example
Let $\mathcal{P}=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?
$\operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T$ iff $\operatorname{val}_{\mathcal{I}_{2}}(p)=F$ or val $\mathcal{I}_{2}(q \rightarrow p)=T$

Valuation Examples

Example
Let $\mathcal{P}=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or } \operatorname{val}_{\mathcal{I}_{2}}(q \rightarrow p)=T \\
& \operatorname{va}_{\mathcal{I}_{2}}(p)=
\end{aligned}
$$

Valuation Examples

Example
Let $\mathcal{P}=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or } \operatorname{val}_{\mathcal{I}_{2}}(q \rightarrow p)=T \\
& \operatorname{va}_{\mathcal{I}_{2}}(p)=\mathcal{I}_{2}(p)=
\end{aligned}
$$

Valuation Examples

Example
Let $\mathcal{P}=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or } \operatorname{val}_{\mathcal{I}_{2}}(q \rightarrow p)=T \\
& \operatorname{va}_{\mathcal{I}_{2}}(p)=\mathcal{I}_{2}(p)=T
\end{aligned}
$$

Valuation Examples

Example
Let $\mathcal{P}=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(q \rightarrow p)=T \\
& \operatorname{va}_{\mathcal{I}_{2}}(p)=\underset{\mathcal{I}_{2}(p)}{ }=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(q \rightarrow p) \stackrel{ }{=}
\end{aligned}
$$

Valuation Examples

Example
Let $\mathcal{P}=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or val } \mathcal{I}_{2}(q \rightarrow p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(p)=\mathcal{I}_{2}(p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(q \rightarrow p)=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(q)=F \text { or } \operatorname{val}_{\mathcal{I}_{2}}(p)=T
\end{aligned}
$$

Valuation Examples

Example
Let $\mathcal{P}=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(q \rightarrow p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(p)=T \\
& \left.\operatorname{val}_{\mathcal{I}_{2}}(q)=p\right)=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(q)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(q)=
\end{aligned}
$$

Valuation Examples

Example
Let $\mathcal{P}=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or val } \mathcal{I}_{2}(q \rightarrow p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(p)=T \\
& \left.\operatorname{val}_{\mathcal{I}_{2}}(q)=p\right)=T \text { } \quad=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(q)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(q)=\mathcal{I}_{2}(q)=
\end{aligned}
$$

Valuation Examples

Example
Let $\mathcal{P}=\{p, q\}$

$$
\begin{array}{ccc}
p \rightarrow & (q \rightarrow p) \\
& p & q \\
\hline \mathcal{I}_{1} & F & F \\
\mathcal{I}_{2} & T & F
\end{array}
$$

How to evaluate $p \rightarrow(q \rightarrow p)$ in \mathcal{I}_{2} ?

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{I}_{2}}(p \rightarrow(q \rightarrow p))=T \text { iff } \operatorname{val}_{\mathcal{I}_{2}}(p)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(q \rightarrow p)=T \\
& \operatorname{val}_{\mathcal{I}_{2}}(p)=T \\
& \left.\operatorname{val}_{\mathcal{I}_{2}}(q)=p\right)=T \text { iff }\left(p a l_{\mathcal{I}_{2}}(q)=F \text { or val } \mathcal{I}_{\mathcal{I}_{2}}(p)=T\right. \\
& \operatorname{val}_{\mathcal{I}_{2}}(q)=T \mathcal{I}_{2}(q)=F
\end{aligned}
$$

Semantic Notions of Propositional Logic

Let $\phi \in$ For $_{0}, \Gamma \subseteq$ For $_{0}$
Definition (Satisfying Interpretation, Consequence Relation)
\mathcal{I} satisfies ϕ (write: $\mathcal{I} \models \phi$) iff $\operatorname{val}_{\mathcal{I}}(\phi)=T$
ϕ follows from Γ (write: $\Gamma \models \phi$) iff for all interpretations \mathcal{I} :

$$
\text { If } \mathcal{I} \models \psi \text { for all } \psi \in \Gamma \text { then also } \mathcal{I} \models \phi
$$

Semantic Notions of Propositional Logic

Let $\phi \in$ For $_{0}, \Gamma \subseteq$ For $_{0}$
Definition (Satisfying Interpretation, Consequence Relation)
\mathcal{I} satisfies ϕ (write: $\mathcal{I} \models \phi$) iff $\operatorname{val}_{\mathcal{I}}(\phi)=T$
ϕ follows from Γ (write: $\Gamma \models \phi$) iff for all interpretations \mathcal{I} :

$$
\text { If } \mathcal{I} \models \psi \text { for all } \psi \in \Gamma \text { then also } \mathcal{I} \models \phi
$$

Definition (Satisfiability, Validity)

A formula is satisfiable if it is satisfied by some interpretation.
If every interpretation satisfies ϕ (write: $\models \phi$) then ϕ is called valid.

Semantics of Propositional Logic: Examples

Formula (same as before)

$$
p \rightarrow(q \rightarrow p)
$$

Semantics of Propositional Logic: Examples

Formula (same as before)

$$
p \rightarrow(q \rightarrow p)
$$

Is this formula valid?

$$
\models p \rightarrow(q \rightarrow p) ?
$$

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?
Satisfying Interpretation?

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?
Satisfying Interpretation? $\mathcal{I}(p)=T, \mathcal{I}(q)=T$

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?
Satisfying Interpretation? $\mathcal{I}(p)=T, \mathcal{I}(q)=T$
Other Satisfying Interpretations?

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?

Satisfying Interpretation? $\quad \mathcal{I}(p)=T, \mathcal{I}(q)=T$
Other Satisfying Interpretations?
X

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?
Satisfying Interpretation? $\quad \mathcal{I}(p)=T, \mathcal{I}(q)=T$
Other Satisfying Interpretations?
x
Therefore, also not valid!

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?
Satisfying Interpretation? $\mathcal{I}(p)=T, \mathcal{I}(q)=T$
Other Satisfying Interpretations?
Therefore, also not valid!

$$
p \wedge((\neg p) \vee q) \vDash q \vee r
$$

Does it hold?

Semantics of Propositional Logic: Examples

$$
p \wedge((\neg p) \vee q)
$$

Satisfiable?
Satisfying Interpretation? $\quad \mathcal{I}(p)=T, \mathcal{I}(q)=T$
Other Satisfying Interpretations?
Therefore, also not valid!

$$
p \wedge((\neg p) \vee q) \vDash q \vee r
$$

Does it hold? Yes. Why?

An Exercise in Formalisation

```
1 byte \(n\);
2 active proctype [2] \(P()\) \{
\(3 \mathrm{n}=0\);
\(4 \mathrm{n}=\mathrm{n}+1\)
\(5\}\)
```

Can we characterise the states of P propositionally?

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3 n = 0;
4n=n + 1
5}
```

Can we characterise the states of P propositionally?
Find a propositional formula ϕ_{P} which is true if and only if (iff) it describes a possible state of P.

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3n = 0;
4 n = n + 1
5}
```

$\mathcal{P}: N_{0}, N_{1}, N_{2}, \ldots, N_{7} 8$-bit representation of byte $P C 0_{3}, P C 0_{4}, P C 0_{5}, P C 1_{3}, P C 1_{4}, P C 1_{5}$ next instruction pointer Which interpretations do we need to "exclude"?
$\phi_{\mathrm{P}}:=$

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3 n = 0;
4 n = n + 1
5}
```

$\mathcal{P}: N_{0}, N_{1}, N_{2}, \ldots, N_{7} 8$-bit representation of byte $P \mathrm{CO}_{3}, P \mathrm{PO}_{4}, P \mathrm{PO}_{5}, P C 1_{3}, P C 1_{4}, P C 1_{5}$ next instruction pointer Which interpretations do we need to "exclude"?

- The variable n is represented by eight bits, all values possible
$\phi_{\mathrm{P}}:=$

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3 n = 0;
4 n = n + 1
5}
```

$\mathcal{P}: N_{0}, N_{1}, N_{2}, \ldots, N_{7} 8$-bit representation of byte $P \mathrm{CO}_{3}, P \mathrm{PO}_{4}, P \mathrm{PO}_{5}, P C 1_{3}, P C 1_{4}, P C 1_{5}$ next instruction pointer Which interpretations do we need to "exclude"?

- The variable n is represented by eight bits, all values possible
- A process cannot be at two positions at the same time
$\phi_{\mathrm{P}}:=\left(\left(\left(\mathrm{PCO}_{3} \wedge \neg \mathrm{PCO}_{4} \wedge \neg P C 0_{5}\right) \vee \cdots\right) \wedge\right.$

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3 n = 0;
4 n = n + 1
5}
```

$\mathcal{P}: N_{0}, N_{1}, N_{2}, \ldots, N_{7} 8$-bit representation of byte $P \mathrm{PO}_{3}, P \mathrm{PO}_{4}, P \mathrm{PO}_{5}, P C 1_{3}, P C 1_{4}, P C 1_{5}$ next instruction pointer Which interpretations do we need to "exclude"?

- The variable n is represented by eight bits, all values possible
- A process cannot be at two positions at the same time
- If neither process 0 nor process 1 are at position 5 , then n is zero
$\phi_{\mathrm{P}}:=\binom{\left(\left(P \mathrm{PO}_{3} \wedge \neg P C 0_{4} \wedge \neg P C 0_{5}\right) \vee \cdots\right) \wedge}{\left(\left(\neg P C 0_{5} \wedge \neg P C 1_{5}\right) \Longrightarrow\left(\neg N_{0} \wedge \cdots \wedge \neg N_{7}\right)\right)}$

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3 n = 0;
4 n = n + 1
5}
```

$\mathcal{P}: N_{0}, N_{1}, N_{2}, \ldots, N_{7} 8$-bit representation of byte $P \mathrm{PO}_{3}, P \mathrm{PO}_{4}, P \mathrm{PO}_{5}, P C 1_{3}, P C 1_{4}, P C 1_{5}$ next instruction pointer Which interpretations do we need to "exclude"?

- The variable n is represented by eight bits, all values possible
- A process cannot be at two positions at the same time
- If neither process 0 nor process 1 are at position 5 , then n is zero
$\phi_{\mathrm{P}}:=\binom{\left(\left(P C 0_{3} \wedge \neg P C 0_{4} \wedge \neg P C 0_{5}\right) \vee \cdots\right) \wedge}{\left(\left(\neg P C 0_{5} \wedge \neg P C 1_{5}\right) \Longrightarrow\left(\neg N_{0} \wedge \cdots \wedge \neg N_{7}\right)\right) \wedge \cdots}$

Is Propositional Logic Enough?

Can design for a program P a formula Φ_{P} describing all reachable states
For a given property Ψ the consequence relation

$$
\Phi_{p} \models \Psi
$$

holds when Ψ is true in any possible state reachable in any run of P

Is Propositional Logic Enough?

Can design for a program P a formula Φ_{P} describing all reachable states
For a given property Ψ the consequence relation

$$
\Phi_{p} \models \Psi
$$

holds when Ψ is true in any possible state reachable in any run of P

```
But How to Express Properties Involving State Changes?
In any run of a program P
    - n will become greater than 0 eventually?
    - n changes its value infinitely often
etc.
```


Is Propositional Logic Enough?

Can design for a program P a formula Φ_{P} describing all reachable states
For a given property Ψ the consequence relation

$$
\Phi_{p} \models \Psi
$$

holds when Ψ is true in any possible state reachable in any run of P

But How to Express Properties Involving State Changes?
In any run of a program P

- n will become greater than 0 eventually?
- n changes its value infinitely often
etc.
\Rightarrow Need a more expressive logic: (Linear) Temporal Logic

Transition systems (aka Kripke Structures)

Notation

Transition systems (aka Kripke Structures)

- Each state s_{i} has its own propositional interpretation I_{i}
- Convention: list values of variables in ascending lexicographic order
- Computations, or runs, are infinite paths through states
- Intuitively 'finite' runs modelled by looping on last state
- How to express (for example) that p changes its value infinitely often in each run?

Formal Verification: Model Checking

(Linear) Temporal Logic

An extension of propositional logic that allows to specify properties of all runs

(Linear) Temporal Logic-Syntax

An extension of propositional logic that allows to specify properties of all runs

Syntax

Based on propositional signature and syntax
Extension with three connectives:
Always If ϕ is a formula then so is $\square \phi$
Eventually If ϕ is a formula then so is $\diamond \phi$
Until If ϕ and ψ are formulas then so is $\phi \mathcal{U} \psi$
Concrete Syntax

	text book	SpIN
Always	\square	[]
Eventually	\diamond	$<>$
Until	\mathcal{U}	U

Temporal Logic-Semantics

A run σ is an infinite chain of states

\mathcal{I}_{j} propositional interpretation of variables in j-th state Write more compactly $s_{0} s_{1} s_{2} s_{3} \ldots$

Temporal Logic-Semantics

A run σ is an infinite chain of states

\mathcal{I}_{j} propositional interpretation of variables in j-th state Write more compactly $s_{0} s_{1} s_{2} s_{3} \ldots$

If $\sigma=s_{0} s_{1} \cdots$, then $\left.\sigma\right|_{i}$ denotes the suffix $s_{i} s_{i+1} \cdots$ of σ.

Temporal Logic-Semantics (Cont'd)

Valuation of temporal formula relative to run: infinite sequence of states

Temporal Logic-Semantics (Cont'd)

Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

Validity of temporal formula depends on runs $\sigma=s_{0} s_{1} \ldots$
$\sigma \models p \quad$ iff $\quad \mathcal{I}_{0}(p)=T$, for $p \in \mathcal{P}$.

Temporal Logic-Semantics (Cont'd)

Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

Validity of temporal formula depends on runs $\sigma=s_{0} s_{1} \ldots$

```
\sigma\modelsp iff }\mp@subsup{\mathcal{I}}{0}{}(p)=T\mathrm{ , for }p\in\mathcal{P}\mathrm{ .
\sigma\models\neg\phi
iff not }\sigma\models\phi\quad(write \sigma\not\models\phi
```


Temporal Logic-Semantics (Cont'd)

Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

Validity of temporal formula depends on runs $\sigma=s_{0} s_{1} \ldots$

$\sigma \models p$	iff	$\mathcal{I}_{0}(p)=T$, for $p \in \mathcal{P}$.
$\sigma \models \neg \phi$	iff	not $\sigma \models \phi \quad($ write $\sigma \not \models \phi)$
$\sigma \models \phi \wedge \psi$	iff	$\sigma \models \phi$ and $\sigma \models \psi$

Temporal Logic-Semantics (Cont'd)

Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

Validity of temporal formula depends on runs $\sigma=s_{0} s_{1} \ldots$

$\sigma \models p$	iff	
$\mathcal{I}_{0}(p)=T$, for $p \in \mathcal{P}$.		
$\sigma \models \neg \phi$	iff	not $\sigma \models \phi$ (write $\sigma \not \models \phi$)
$\sigma \models \phi \wedge \psi$	iff	$\sigma \models \phi$ and $\sigma \models \psi$
$\sigma \models \phi \vee \psi$	iff	$\sigma \models \phi$ or $\sigma \models \psi$
$\sigma \models \phi \rightarrow \psi$	iff	$\sigma \not \models \phi$ or $\sigma \models \psi$

Temporal Logic-Semantics (Cont'd)

Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

Validity of temporal formula depends on runs $\sigma=s_{0} s_{1} \ldots$

$\sigma \models p$	iff	$\mathcal{I}_{0}(p)=T$, for $p \in \mathcal{P}$.
$\sigma \models \neg \phi$	iff	not $\sigma \models \phi \quad$ (write $\sigma \not \models \phi$)
$\sigma \models \phi \wedge \psi$	iff	$\sigma \models \phi$ and $\sigma \models \psi$
$\sigma \models \phi \vee \psi$	iff	$\sigma \models \phi$ or $\sigma \models \psi$
$\sigma \models \phi \rightarrow \psi$	iff	$\sigma \not \models \phi$ or $\sigma \models \psi$

Temporal connectives?

Temporal Logic-Semantics (Cont'd)

Run σ

Definition (Validity Relation for Temporal Connectives)
Given a run $\sigma=s_{0} s_{1} \ldots$

Temporal Logic-Semantics (Cont'd)

Run σ

Definition (Validity Relation for Temporal Connectives)
Given a run $\sigma=s_{0} s_{1} \cdots$
$\sigma \models \square \phi \quad$ iff $\left.\quad \sigma\right|_{k} \models \phi$ for all $k \geq 0$

Temporal Logic-Semantics (Cont'd)

Run σ

Definition (Validity Relation for Temporal Connectives)
Given a run $\sigma=s_{0} s_{1} \cdots$
$\sigma \models \square \phi \quad$ iff $\left.\quad \sigma\right|_{k} \models \phi$ for all $k \geq 0$
$\sigma \models \diamond \phi \quad$ iff $\left.\quad \sigma\right|_{k} \models \phi$ for some $k \geq 0$

Temporal Logic-Semantics (Cont'd)

Run σ

Definition (Validity Relation for Temporal Connectives)

Given a run $\sigma=s_{0} s_{1} \cdots$

$\sigma \models \square \phi$	iff	$\left.\sigma\right\|_{k} \models \phi$ for all $k \geq 0$
$\sigma \models \diamond \phi$	iff	$\left.\sigma\right\|_{k} \models \phi$ for some $k \geq 0$
$\sigma \models \phi \mathcal{U} \psi$	iff	$\left.\sigma\right\|_{k} \models \psi$ for some $k \geq 0$, and $\left.\sigma\right\|_{j} \models \phi$ for all $0 \leq j<k$

Safety and Liveness Properties

Safety Properties

- Always-formulas called safety properties:
"something bad never happens"
- Let mutex ("mutual exclusion") be a variable that is true when two processes do not access a critical resource at the same time
- \square mutex expresses that simultaneous access never happens

Safety and Liveness Properties

Safety Properties

- Always-formulas called safety properties:
"something bad never happens"
- Let mutex ("mutual exclusion") be a variable that is true when two processes do not access a critical resource at the same time
- \square mutex expresses that simultaneous access never happens

Liveness Properties

- Eventually-formulas called liveness properties: "something good happens eventually"
- Let s be variable that is true when a process delivers a service
- \diamond s expresses that service is eventually provided

Complex Properties

What does this mean?

$$
\sigma \models \square \diamond \phi
$$

Complex Properties

Infinitely Often

$$
\sigma \models \square \diamond \phi
$$

"During run σ the formula ϕ becomes true infinitely often"

Validity of Temporal Logic

```
Definition (Validity)
\(\phi\) is valid, write \(\models \phi\), iff \(\sigma \models \phi\) for all runs \(\sigma=s_{0} s_{1} \cdots\).
```


Validity of Temporal Logic

```
Definition (Validity)
\(\phi\) is valid, write \(\models \phi\), iff \(\sigma \models \phi\) for all runs \(\sigma=s_{0} s_{1} \cdots\).
```

Recall that each run $s_{0} s_{1} \cdots$ essentially is an infinite sequence of interpretations $\mathcal{I}_{0} \mathcal{I}_{1} \ldots$

Representation of Runs

Can represent a set of runs as a sequence of propositional formulas:

- $\phi_{0} \phi_{1}, \cdots$ represents all runs $s_{0} s_{1} \cdots$ such that $s_{i}=\phi_{i}$ for $i \geq 0$

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?

No, there is a run where it is not valid:

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?

No, there is a run where it is not valid: ($\neg \phi \neg \phi \neg \phi \ldots$)

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?

No, there is a run where it is not valid: ($\neg \phi \neg \phi \neg \phi \ldots$)
Valid in some run?

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?

No, there is a run where it is not valid: ($\neg \phi \neg \phi \neg \phi \ldots$)
Valid in some run?
Yes, for example: $(\neg \phi \phi \phi \ldots)$

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?

No, there is a run where it is not valid:

$$
(\neg \phi \neg \phi \neg \phi \ldots)
$$

Valid in some run?
Yes, for example: $(\neg \phi \phi \phi \ldots)$

$$
\square \phi \rightarrow \phi \quad(\neg \square \phi) \leftrightarrow(\diamond \neg \phi) \quad \diamond \phi \leftrightarrow(\text { true } \mathcal{U} \phi)
$$

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?
No, there is a run where it is not valid:

$$
(\neg \phi \neg \phi \neg \phi \ldots)
$$

Valid in some run?
Yes, for example: $(\neg \phi \phi \phi \ldots)$

$$
\square \phi \rightarrow \phi \quad(\neg \square \phi) \leftrightarrow(\diamond \neg \phi) \quad \diamond \phi \leftrightarrow(\text { true } \mathcal{U} \phi)
$$

All are valid! (proof is exercise)

Semantics of Temporal Logic: Examples

$\diamond \square \phi$

Valid?
No, there is a run where it is not valid:

$$
(\neg \phi \neg \phi \neg \phi \ldots)
$$

Valid in some run?
Yes, for example: $(\neg \phi \phi \phi \ldots)$

$$
\square \phi \rightarrow \phi \quad(\neg \square \phi) \leftrightarrow(\diamond \neg \phi) \quad \diamond \phi \leftrightarrow(\text { true } \mathcal{U} \phi)
$$

All are valid! (proof is exercise)

- \square is reflexive
- \square and \diamond are dual connectives
- \square and \diamond can be expressed with only using \mathcal{U}

Transition Systems: Formal Definition

Definition (Transition System)

A transition system $\mathcal{T}=(S, \operatorname{Ini}, \delta, \mathcal{I})$ is composed of a set of states S, a set $\emptyset \neq I n i \subseteq S$ of initial states, a transition relation $\delta \subseteq S \times S$, and a labeling \mathcal{I} of each state $s \in S$ with a propositional interpretation \mathcal{I}_{s}.

Definition (Run of Transition System)

A run of \mathcal{T} is a sequence of states $\sigma=s_{0} s_{1} \cdots$ such that $s_{0} \in \operatorname{Ini}$ and for all i is $s_{i} \in S$ as well as $\left(s_{i}, s_{i+1}\right) \in \delta$.

Temporal Logic-Semantics (Cont'd)

Extension of validity of temporal formulas to transition systems:

Definition (Validity Relation)

Given a transition system $\mathcal{T}=(S, \operatorname{Ini}, \delta, \mathcal{I})$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\sigma \equiv \phi$ for all runs σ of \mathcal{T}.

Formal Verification: Model Checking

ω-Languages

Given a finite alphabet (vocabulary) Σ
A word $w \in \Sigma^{*}$ is a finite sequence

$$
w=a_{o} \cdots a_{n}
$$

with $a_{i} \in \Sigma, i \in\{0, \ldots, n\}$
$\mathcal{L} \subseteq \Sigma^{*}$ is called a language

ω-Languages

Given a finite alphabet (vocabulary) Σ
An ω-word $w \in \Sigma^{\omega}$ is an infinite sequence

$$
w=a_{0} \cdots a_{k} \cdots
$$

with $a_{i} \in \Sigma, i \in \mathbb{N}$
$\mathcal{L}^{\omega} \subseteq \Sigma^{\omega}$ is called an ω-language

Büchi Automaton

Definition (Büchi Automaton)

A (non-deterministic) Büchi automaton over an alphabet Σ consists of a

- finite, non-empty set of locations Q
- a non-empty set of initial/start locations $I \subseteq Q$
- a set of accepting locations $F=\left\{F_{1}, \ldots, F_{n}\right\} \subseteq Q$
- a transition relation $\delta \subseteq Q \times \Sigma \times Q$

Example
$\Sigma=\{a, b\}, Q=\left\{q_{1}, q_{2}, q_{3}\right\}, I=\left\{q_{1}\right\}, F=\left\{q_{2}\right\}$

Büchi Automaton-Executions and Accepted Words

Definition (Execution)

Let $\mathcal{B}=(Q, I, F, \delta)$ be a Büchi automaton over alphabet Σ. An execution of \mathcal{B} is a pair (w, v), with

- $w=a_{o} \cdots a_{k} \cdots \in \Sigma^{\omega}$
- $v=q_{0} \cdots q_{k} \cdots \in Q^{\omega}$
where $q_{0} \in I$, and $\left(q_{i}, a_{i}, q_{i+1}\right) \in \delta$, for all $i \in \mathbb{N}$

Büchi Automaton-Executions and Accepted Words

Definition (Execution)

Let $\mathcal{B}=(Q, I, F, \delta)$ be a Büchi automaton over alphabet Σ. An execution of \mathcal{B} is a pair (w, v), with

- $w=a_{0} \cdots a_{k} \cdots \in \Sigma^{\omega}$
- $v=q_{0} \cdots q_{k} \cdots \in Q^{\omega}$
where $q_{0} \in I$, and $\left(q_{i}, a_{i}, q_{i+1}\right) \in \delta$, for all $i \in \mathbb{N}$

Definition (Accepted Word)

A Büchi automaton \mathcal{B} accepts a word $w \in \Sigma^{\omega}$, if there exists an execution (w, v) of \mathcal{B} where some accepting location $f \in F$ appears infinitely often in v

Büchi Automaton-Language

Let $\mathcal{B}=(Q, I, F, \delta)$ be a Büchi automaton, then

$$
\mathcal{L}^{\omega}(\mathcal{B})=\left\{w \in \Sigma^{\omega} \mid w \in \Sigma^{\omega} \text { is an accepted word of } \mathcal{B}\right\}
$$

denotes the ω-language recognised by \mathcal{B}.

Büchi Automaton-Language

Let $\mathcal{B}=(Q, I, F, \delta)$ be a Büchi automaton, then

$$
\mathcal{L}^{\omega}(\mathcal{B})=\left\{w \in \Sigma^{\omega} \mid w \in \Sigma^{\omega} \text { is an accepted word of } \mathcal{B}\right\}
$$

denotes the ω-language recognised by \mathcal{B}.
An ω-language for which an accepting Büchi automaton exists is called ω-regular language.

Example, ω-Regular Expression

Which language is accepted by the following Büchi automaton?

Example, ω-Regular Expression

Which language is accepted by the following Büchi automaton?

Solution: $(a+b)^{*}(a b)^{\omega}$
$\left[\right.$ NB: $\left.(a b)^{\omega}=a(b a)^{\omega}\right]$

Example, ω-Regular Expression

Which language is accepted by the following Büchi automaton?

Solution: $(a+b)^{*}(a b)^{\omega}$
$\left[\right.$ NB: $\left.(a b)^{\omega}=a(b a)^{\omega}\right]$
ω-regular expressions like standard regular expression $a b$ a then b
$a+b a$ or b
a* arbitrarily, but finitely often a
new: a^{ω} infinitely often a

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Theorem (Closure properties)

The set of ω-regular languages is closed with respect to intersection, union and complement:

- if $\mathcal{L}_{1}, \mathcal{L}_{2}$ are ω-regular then $\mathcal{L}_{1} \cap \mathcal{L}_{2}$ and $\mathcal{L}_{1} \cup \mathcal{L}_{2}$ are ω-regular
- \mathcal{L} is ω-regular then $\Sigma^{\omega} \backslash \mathcal{L}$ is ω-regular

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Theorem (Closure properties)

The set of ω-regular languages is closed with respect to intersection, union and complement:

- if $\mathcal{L}_{1}, \mathcal{L}_{2}$ are ω-regular then $\mathcal{L}_{1} \cap \mathcal{L}_{2}$ and $\mathcal{L}_{1} \cup \mathcal{L}_{2}$ are ω-regular
- \mathcal{L} is ω-regular then $\Sigma^{\omega} \backslash \mathcal{L}$ is ω-regular

But in contrast to regular finite automata
Non-deterministic Büchi automata are strictly more expressive than deterministic ones

Büchi Automata-More Examples

Language:

Büchi Automata-More Examples

Language: $a(a+b a)^{\omega}$

Büchi Automata-More Examples

Language: $a(a+b a)^{\omega}$

Language:

Büchi Automata-More Examples

Language: $a(a+b a)^{\omega}$

Language: $\left(a^{*} b a\right)^{\omega}$

Formal Verification: Model Checking

Linear Temporal Logic and Büchi Automata

LTL and Büchi Automata are connected

Recall

Definition (Validity Relation)

Given a transition system $\mathcal{T}=(S, \operatorname{Ini}, \delta, \mathcal{I})$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\sigma \models \phi$ for all runs σ of \mathcal{T}.

A run of the transition system is an infinite sequence of interpretations I

Linear Temporal Logic and Büchi Automata

LTL and Büchi Automata are connected

Recall

Definition (Validity Relation)

Given a transition system $\mathcal{T}=(S, \operatorname{Ini}, \delta, \mathcal{I})$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\sigma \models \phi$ for all runs σ of \mathcal{T}.

A run of the transition system is an infinite sequence of interpretations I

Intended Connection

Given an LTL formula ϕ :
Construct a Büchi automaton accepting exactly those runs (infinite sequences of interpretations) that satisfy ϕ

Encoding an LTL Formula as a Büchi Automaton

\mathcal{P} set of propositional variables, e.g., $\mathcal{P}=\{r, s\}$
Suitable alphabet Σ for Büchi automaton?

Encoding an LTL Formula as a Büchi Automaton

\mathcal{P} set of propositional variables, e.g., $\mathcal{P}=\{r, s\}$
Suitable alphabet Σ for Büchi automaton?
A state transition of Büchi automaton must represent an interpretation

Encoding an LTL Formula as a Büchi Automaton

\mathcal{P} set of propositional variables, e.g., $\mathcal{P}=\{r, s\}$
Suitable alphabet Σ for Büchi automaton?
A state transition of Büchi automaton must represent an interpretation
Choose Σ to be the set of all interpretations over \mathcal{P}, encoded as $2^{\mathcal{P}}$
Example
$\Sigma=\{\emptyset,\{r\},\{s\},\{r, s\}\}$

$$
I_{\emptyset}(r)=F, I_{\emptyset}(s)=F, I_{\{r\}}(r)=T, I_{\{r\}}(s)=F, \ldots
$$

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula r over $\mathcal{P}=\{r, s\}$)

A Büchi automaton \mathcal{B} accepting exactly those runs σ satisfying r

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula r over $\mathcal{P}=\{r, s\}$)
A Büchi automaton \mathcal{B} accepting exactly those runs σ satisfying r

In the first state s_{0} (of σ) at least r must hold, the rest is arbitrary

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula r over $\mathcal{P}=\{r, s\}$)
A Büchi automaton \mathcal{B} accepting exactly those runs σ satisfying r

In the first state s_{0} (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula $\square r$ over $\mathcal{P}=\{r, s\}$)

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula r over $\mathcal{P}=\{r, s\}$)
A Büchi automaton \mathcal{B} accepting exactly those runs σ satisfying r

In the first state s_{0} (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula $\square r$ over $\mathcal{P}=\{r, s\}$)

In all states s (of σ) at least r must hold

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula r over $\mathcal{P}=\{r, s\}$)
A Büchi automaton \mathcal{B} accepting exactly those runs σ satisfying r

In the first state s_{0} (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula $\square r$ over $\mathcal{P}=\{r, s\}$)

In all states s (of σ) at least r must hold

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula $\diamond \square r$ over $\mathcal{P}=\{r, s\}$)

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula $\diamond \square r$ over $\mathcal{P}=\{r, s\}$)

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula $\diamond \square r$ over $\mathcal{P}=\{r, s\}$)

Formal Verification: Model Checking

Model Checking

Check whether a formula is valid in all runs of a transition system
Given a transition system \mathcal{T} (e.g., derived from a Promela program)
Verification task: is the LTL formula ϕ satisfied in all runs of \mathcal{T}, i.e.,

$$
\mathcal{T} \models \phi \quad ?
$$

Model Checking

Check whether a formula is valid in all runs of a transition system
Given a transition system \mathcal{T} (e.g., derived from a Promela program)
Verification task: is the LTL formula ϕ satisfied in all runs of \mathcal{T}, i.e.,

$$
\mathcal{T} \models \phi \quad ?
$$

Temporal model checking with Spin: Topic of next lecture

Model Checking

Check whether a formula is valid in all runs of a transition system
Given a transition system \mathcal{T} (e.g., derived from a Promela program)
Verification task: is the LTL formula ϕ satisfied in all runs of \mathcal{T}, i.e.,

$$
\mathcal{T} \models \phi \quad ?
$$

Temporal model checking with Spin: Topic of next lecture

Today: Basic principle behind Spin model checking

Spin Model Checking-Overview

$$
\mathcal{T} \models \phi \quad ?
$$

1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}

Spin Model Checking-Overview

$$
\mathcal{T} \models \phi \quad ?
$$

1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}
2. Construct Büchi automaton $\mathcal{B}_{\neg \phi}$ for negation of formula ϕ

Spin Model Checking-Overview

$$
\mathcal{T} \models \phi \quad ?
$$

1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}
2. Construct Büchi automaton $\mathcal{B}_{\neg \phi}$ for negation of formula ϕ
3. If

$$
\mathcal{L}^{\omega}\left(\mathcal{B}_{\mathcal{T}}\right) \cap \mathcal{L}^{\omega}\left(\mathcal{B}_{\neg \phi}\right)=\emptyset
$$

then $\mathcal{T} \models \phi$ holds.

Spin Model Checking-Overview

$$
\mathcal{T} \models \phi \quad ?
$$

1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}
2. Construct Büchi automaton $\mathcal{B}_{\neg \phi}$ for negation of formula ϕ
3. If

$$
\mathcal{L}^{\omega}\left(\mathcal{B}_{\mathcal{T}}\right) \cap \mathcal{L}^{\omega}\left(\mathcal{B}_{\neg \phi}\right)=\emptyset
$$

then $\mathcal{T} \models \phi$ holds.
If

$$
\mathcal{L}^{\omega}\left(\mathcal{B}_{\mathcal{T}}\right) \cap \mathcal{L}^{\omega}\left(\mathcal{B}_{\neg \phi}\right) \neq \emptyset
$$

then each element of the set is a counterexample for ϕ.

Spin Model Checking-Overview

$$
\mathcal{T} \models \phi \quad ?
$$

1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}
2. Construct Büchi automaton $\mathcal{B}_{\neg \phi}$ for negation of formula ϕ
3. If

$$
\mathcal{L}^{\omega}\left(\mathcal{B}_{\mathcal{T}}\right) \cap \mathcal{L}^{\omega}\left(\mathcal{B}_{\neg \phi}\right)=\emptyset
$$

then $\mathcal{T} \models \phi$ holds.
If

$$
\mathcal{L}^{\omega}\left(\mathcal{B}_{\mathcal{T}}\right) \cap \mathcal{L}^{\omega}\left(\mathcal{B}_{\neg \phi}\right) \neq \emptyset
$$

then each element of the set is a counterexample for ϕ.
To check $\mathcal{L}^{\omega}\left(\mathcal{B}_{\mathcal{T}}\right) \cap \mathcal{L}^{\omega}\left(\mathcal{B}_{\neg \phi}\right)$ construct intersection automaton and search for cycle through accepting state

Representing a Model as a Büchi Automaton

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

Example

```
active proctype P () {
do
    :: atomic {
        !wQ; wP = true
    };
    Pcs = true;
    atomic {
        Pcs = false;
        wP = false
    }
od }
```

Similar code for process Q.
Second atomic block just to keep automaton small.

Representing a Model as a Büchi Automaton

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

Example

active proctype P () \{ do
: : atomic \{

$$
!\mathrm{wQ} ; \mathrm{wP}=\text { true }
$$

\};
Pcs = true;
atomic \{ Pcs = false;
wP = false
od $\}$

Similar code for process Q.
Second atomic block just to keep automaton small.

Representing a Model as a Büchi Automaton

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

Example

active proctype P () \{ do
: : atomic \{

$$
!\mathrm{wQ} ; \quad \mathrm{wP}=\text { true }
$$

\};
Pcs = true;
atomic \{ Pcs = false;
wP = false
od $\}$
\}

Which are the accepting locations?

Representing a Model as a Büchi Automaton

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

Example

active proctype P () \{ do
: : atomic \{

$$
!\mathrm{wQ} ; \mathrm{wP}=\text { true }
$$

\};
Pcs = true;
atomic \{ Pcs = false;
wP = false
\}
od $\}$

Which are the accepting locations? All!

Representing a Model as a Büchi Automaton

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

Example

active proctype P () \{ do
: : atomic \{

$$
!\mathrm{wQ} ; \mathrm{wP}=\text { true }
$$

\};
Pcs = true;
atomic \{ Pcs = false;
wP = false
od $\}$

The property we want to check is $\phi=\square \neg P c s$ (which does not hold)

Büchi Automaton $B_{\neg \phi}$ for $\neg \phi$

Second Step:
Construct Büchi Automaton corresponding to negated LTL formula
$\mathcal{T} \models \phi$ holds iff there is no accepting run σ of \mathcal{T} s.t. $\sigma \models \neg \phi$
Simplify $\neg \phi=\neg \square \neg P c s=\diamond P c s$

Büchi Automaton $B_{\neg \phi}$ for

Second Step:
Construct Büchi Automaton corresponding to negated LTL formula
$\mathcal{T} \models \phi$ holds iff there is no accepting run σ of \mathcal{T} s.t. $\sigma \models \neg \phi$
Simplify $\neg \phi=\neg \square \neg P c s=\diamond P c s$
Büchi Automaton $\mathcal{B}_{\neg \phi}$

$$
\mathcal{P}=\{w P, w Q, P c s, Q c s\}, \Sigma=2^{\mathcal{P}}
$$

$$
\Sigma_{P c s}=\{I \mid I \in \Sigma, P c s \in I\}, \quad \Sigma_{P c s}^{c}=\Sigma-\Sigma_{P c s}
$$

Checking for Emptiness of Intersection Automaton

Third Step: $\quad \mathcal{L}^{\omega}\left(\mathcal{B}_{\mathcal{T}}\right) \cap \mathcal{L}^{\omega}\left(\mathcal{B}_{\neg \phi}\right)=\emptyset \quad$?

Checking for Emptiness of Intersection Automaton

Third Step: $\quad \mathcal{L}^{\omega}\left(\mathcal{B}_{\mathcal{T}}\right) \cap \mathcal{L}^{\omega}\left(\mathcal{B}_{\neg \phi}\right)=\emptyset \quad$?

Intersection Automaton (skipping first step of \mathcal{T} for simplicity)

Checking for Emptiness of Intersection Automaton

Third Step: $\quad \mathcal{L}^{\omega}\left(\mathcal{B}_{\mathcal{T}}\right) \cap \mathcal{L}^{\omega}\left(\mathcal{B}_{\neg \phi}\right) \neq \emptyset$
Counterexample
Intersection Automaton (skipping first step of \mathcal{T} for simplicity)

Checking for Emptiness of Intersection Automaton

Third Step: $\quad \mathcal{L}^{\omega}\left(\mathcal{B}_{\mathcal{T}}\right) \cap \mathcal{L}^{\omega}\left(\mathcal{B}_{\neg \phi}\right) \neq \emptyset$
Counterexample Construction of intersection automaton: Appendix Intersection Automaton (skipping first step of \mathcal{T} for simplicity)

Literature for this Lecture

Ben-Ari Section 5.2.1
(only syntax of LTL)
Baier and Katoen Principles of Model Checking, May 2008, The MIT Press, ISBN: 0-262-02649-X

Appendix I:

Intersection Automaton

Construction

Construction of Intersection Automaton

Given: two Büchi automata $\mathcal{B}_{i}=\left(Q_{i}, \delta_{i}, I_{i}, F_{i}\right), i=1,2$
Wanted: a Büchi automaton

$$
\mathcal{B}_{1 \cap 2}=\left(Q_{1 \cap 2}, \delta_{1 \cap 2}, I_{1 \cap 2}, F_{1 \cap 2}\right)
$$

accepting a word w iff w is accepted by \mathcal{B}_{1} and \mathcal{B}_{2}

Construction of Intersection Automaton

Given: two Büchi automata $\mathcal{B}_{i}=\left(Q_{i}, \delta_{i}, I_{i}, F_{i}\right), i=1,2$
Wanted: a Büchi automaton

$$
\mathcal{B}_{1 \cap 2}=\left(Q_{1 \cap 2}, \delta_{1 \cap 2}, I_{1 \cap 2}, F_{1 \cap 2}\right)
$$

accepting a word w iff w is accepted by \mathcal{B}_{1} and \mathcal{B}_{2}

Maybe just the product automaton as for regular automata?

Product Automata for Intersection

$$
\Sigma=\{a, b\}
$$

$$
a(a+b a)^{\omega}: a
$$

$\left(a^{*} b a\right)^{\omega}$:

Product Automata for Intersection

$$
\Sigma=\{a, b\}, a(a+b a)^{\omega} \cap\left(a^{*} b a\right)^{\omega}=\emptyset ?
$$

$$
a(a+b a)^{\omega}:
$$

Product Automata for Intersection

$$
\Sigma=\{a, b\}, a(a+b a)^{\omega} \cap\left(a^{*} b a\right)^{\omega}=\emptyset \text { ? No, e.g., } a(b a)^{\omega}
$$

$$
a(a+b a)^{\omega}:
$$

Product Automata for Intersection

$$
\Sigma=\{a, b\}, a(a+b a)^{\omega} \cap\left(a^{*} b a\right)^{\omega}=\emptyset \text { ? No, e.g., } a(b a)^{\omega}
$$

$$
a(a+b a)^{\omega}:
$$

$\left(a^{*} b a\right)^{\omega}:$

Product Automaton:

First Attempt: Product Automata for Intersection

$$
\Sigma=\{a, b\}, a(a+b a)^{\omega} \cap\left(a^{*} b a\right)^{\omega}=\emptyset \text { ? No, e.g., } a(b a)^{\omega}
$$

$$
a(a+b a)^{\omega}:
$$

$\left(a^{*} b a\right)^{\omega}$:

Product Automaton: accepting location 11 never reached

Explicit Construction of Intersection Automaton

$$
\left(a^{*} b a\right)^{\omega}:
$$

(i) Product Automaton

$Q_{\cap}=Q_{1} \times Q_{2}$

Explicit Construction of Intersection Automaton

$$
\left(a^{*} b a\right)^{\omega}:
$$

(ii) Reachable States

$Q_{\cap}=Q_{1} \times Q_{2}$

Explicit Construction of Intersection Automaton

$$
a(a+b a)^{\omega}:
$$

$$
\left(a^{*} b a\right)^{\omega}:
$$

(iii) Clone

$Q_{\cap}=Q_{1} \times Q_{2} \times\{1,2\}$

Explicit Construction of Intersection Automaton

$$
a(a+b a)^{\omega}
$$

$$
\left(a^{*} b a\right)^{\omega}:
$$

(iv) Initial States Restricted to First Copy

Explicit Construction of Intersection Automaton

$$
a(a+b a)^{\omega}
$$

$$
\left(a^{*} b a\right)^{\omega}:
$$

(v) Final States Restricted to First Atomaton of First Copy

$Q_{\cap}=Q_{1} \times Q_{2} \times\{1,2\}, I_{\cap}=I_{1} \times I_{2} \times\{1\}, F=F_{1} \times Q_{2} \times\{1\}$

Explicit Construction of Intersection Automaton

(v) Final States Restricted to First Atomaton of First Copy

$Q_{\cap}=Q_{1} \times Q_{2} \times\{1,2\}, I_{\cap}=I_{1} \times I_{2} \times\{1\}, F=F_{1} \times Q_{2} \times\{1\}$

Explicit Construction of Intersection Automaton

(vi) Ensure Acceptance in Both Copies $1 \rightarrow 2$

$Q_{\cap}=Q_{1} \times Q_{2} \times\{1,2\}, I_{\cap}=I_{1} \times I_{2} \times\{1\}, F=F_{1} \times Q_{2} \times\{1\}$
$s_{1} \in Q_{1}, s_{2} \in Q_{2}, \alpha \in \Sigma:$
if $s_{1} \in F_{1}: \quad \delta_{\cap}\left(\left(s_{1}, s_{2}, 1\right), \alpha\right)=\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}, 2\right) \mid s_{1}^{\prime} \in \delta_{1}\left(s_{1}, \alpha\right), s_{2}^{\prime} \in \delta_{2}\left(s_{2}, \alpha\right)\right\}$

Explicit Construction of Intersection Automaton

(vi) Ensure Acceptance in Both Copies $1 \rightarrow 2$

$Q_{\cap}=Q_{1} \times Q_{2} \times\{1,2\}, I_{\cap}=I_{1} \times I_{2} \times\{1\}, F=F_{1} \times Q_{2} \times\{1\}$
$s_{1} \in Q_{1}, s_{2} \in Q_{2}, \alpha \in \Sigma:$
if $s_{1} \in F_{1}: \quad \delta_{\cap}\left(\left(s_{1}, s_{2}, 1\right), \alpha\right)=\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}, 2\right) \mid s_{1}^{\prime} \in \delta_{1}\left(s_{1}, \alpha\right), s_{2}^{\prime} \in \delta_{2}\left(s_{2}, \alpha\right)\right\}$

Explicit Construction of Intersection Automaton

(vi) Ensure Acceptance in Both Copies $1 \rightarrow 2$

$Q_{\cap}=Q_{1} \times Q_{2} \times\{1,2\}, I_{\cap}=I_{1} \times I_{2} \times\{1\}, F=F_{1} \times Q_{2} \times\{1\}$
$s_{1} \in Q_{1}, s_{2} \in Q_{2}, \alpha \in \Sigma:$
if $s_{1} \in F_{1}: \quad \delta_{\cap}\left(\left(s_{1}, s_{2}, 1\right), \alpha\right)=\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}, 2\right) \mid s_{1}^{\prime} \in \delta_{1}\left(s_{1}, \alpha\right), s_{2}^{\prime} \in \delta_{2}\left(s_{2}, \alpha\right)\right\}$

Explicit Construction of Intersection Automaton

(vi) Ensure Acceptance in Both Copies $1 \rightarrow 2$

$Q_{\cap}=Q_{1} \times Q_{2} \times\{1,2\}, I_{\cap}=I_{1} \times I_{2} \times\{1\}, F=F_{1} \times Q_{2} \times\{1\}$
$s_{1} \in Q_{1}, s_{2} \in Q_{2}, \alpha \in \Sigma:$
if $s_{1} \in F_{1}: \quad \delta_{\cap}\left(\left(s_{1}, s_{2}, 1\right), \alpha\right)=\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}, 2\right) \mid s_{1}^{\prime} \in \delta_{1}\left(s_{1}, \alpha\right), s_{2}^{\prime} \in \delta_{2}\left(s_{2}, \alpha\right)\right\}$

Explicit Construction of Intersection Automaton

(vii) Ensure Acceptance in Both Copies $2 \rightarrow 1$

$Q_{\cap}=Q_{1} \times Q_{2} \times\{1,2\}, I_{\cap}=I_{1} \times I_{2} \times\{1\}, F=F_{1} \times Q_{2} \times\{1\}$
$s_{1} \in Q_{1}, s_{2} \in Q_{2}, \alpha \in \Sigma:$
if $s_{1} \in F_{1}: \quad \delta_{\cap}\left(\left(s_{1}, s_{2}, 1\right), \alpha\right)=\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}, 2\right) \mid s_{1}^{\prime} \in \delta_{1}\left(s_{1}, \alpha\right), s_{2}^{\prime} \in \delta_{2}\left(s_{2}, \alpha\right)\right\}$
if $s_{2} \in F_{2}: \quad \delta_{\cap}\left(\left(s_{1}, s_{2}, 2\right), \alpha\right)=\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}, 1\right) \mid s_{1}^{\prime} \in \delta_{1}\left(s_{1}, \alpha\right), s_{2}^{\prime} \in \delta_{2}\left(s_{2}, \alpha\right)\right\}$

Explicit Construction of Intersection Automaton

(vii) Ensure Acceptance in Both Copies $2 \rightarrow 1$

$Q_{\cap}=Q_{1} \times Q_{2} \times\{1,2\}, I_{\cap}=I_{1} \times I_{2} \times\{1\}, F=F_{1} \times Q_{2} \times\{1\}$
$s_{1} \in Q_{1}, s_{2} \in Q_{2}, \alpha \in \Sigma:$
if $s_{1} \in F_{1}: \quad \delta_{\cap}\left(\left(s_{1}, s_{2}, 1\right), \alpha\right)=\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}, 2\right) \mid s_{1}^{\prime} \in \delta_{1}\left(s_{1}, \alpha\right), s_{2}^{\prime} \in \delta_{2}\left(s_{2}, \alpha\right)\right\}$
if $s_{2} \in F_{2}: \quad \delta_{\cap}\left(\left(s_{1}, s_{2}, 2\right), \alpha\right)=\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}, 1\right) \mid s_{1}^{\prime} \in \delta_{1}\left(s_{1}, \alpha\right), s_{2}^{\prime} \in \delta_{2}\left(s_{2}, \alpha\right)\right\}$

Explicit Construction of Intersection Automaton

(viii) Transitions of Product Automaton

$Q_{\cap}=Q_{1} \times Q_{2} \times\{1,2\}, I_{\cap}=I_{1} \times I_{2} \times\{1\}, F=F_{1} \times Q_{2} \times\{1\}$
$s_{1} \in Q_{1}, s_{2} \in Q_{2}, \alpha \in \Sigma:$
if $s_{1} \in F_{1}$:
$\delta_{\cap}\left(\left(s_{1}, s_{2}, 1\right), \alpha\right)=\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}, 2\right) \mid s_{1}^{\prime} \in \delta_{1}\left(s_{1}, \alpha\right), s_{2}^{\prime} \in \delta_{2}\left(s_{2}, \alpha\right)\right\}$
if $s_{2} \in F_{2}: \quad \delta_{\cap}\left(\left(s_{1}, s_{2}, 2\right), \alpha\right)=\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}, 1\right) \mid s_{1}^{\prime} \in \delta_{1}\left(s_{1}, \alpha\right), s_{2}^{\prime} \in \delta_{2}\left(s_{2}, \alpha\right)\right\}$
else:
$\delta_{\cap}\left(\left(s_{1}, s_{2}, i\right), \alpha\right)=\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}, i\right) \mid s_{1}^{\prime} \in \delta_{1}\left(s_{1}, \alpha\right), s_{2}^{\prime} \in \delta_{2}\left(s_{2}, \alpha\right)\right\}$

Appendix II:

Construction of a Büchi Automaton \mathcal{B}_{ϕ} for an LTL-Formula ϕ

The General Case: Generalised Büchi Automata

A generalised Büchi automaton is defined as:

$$
\mathcal{B}^{g}=(Q, \delta, I, \mathbb{F})
$$

Q, δ, I as for standard Büchi automata
$\mathbb{F}=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$, where $\mathcal{F}_{i}=\left\{q_{i 1}, \ldots, q_{i m_{i}}\right\} \subseteq Q$

The General Case: Generalised Büchi Automata

A generalised Büchi automaton is defined as:

$$
\mathcal{B}^{g}=(Q, \delta, I, \mathbb{F})
$$

Q, δ, I as for standard Büchi automata
$\mathbb{F}=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}$, where $\mathcal{F}_{i}=\left\{q_{i 1}, \ldots, q_{i m_{i}}\right\} \subseteq Q$

Definition (Acceptance for generalised Büchi automata)
A generalised Büchi automaton accepts an ω-word $w \in \Sigma^{\omega}$ iff for every $i \in\{1, \ldots, n\}$ at least one $q_{i k} \in \mathcal{F}_{i}$ is visited infinitely often.

Normal vs. Generalised Büchi Automata: Example

Normal vs. Generalised Büchi Automata: Example

$\mathcal{B}^{\text {normal }}$ with $\mathcal{F}=\{1,2\}$, $\mathcal{B}^{\text {general }}$ with $\mathbb{F}=\{\overbrace{\{1\}}, \overbrace{\{2\}}\}$

Normal vs. Generalised Büchi Automata: Example

$\mathcal{B}^{\text {normal }}$ with $\mathcal{F}=\{1,2\}$,
$\mathcal{B}^{\text {general }}$ with $\mathbb{F}=\{\{1\},\{2\}\}$
Which ω-word is accepted by which automaton?

ω-word	$\mathcal{B}^{\text {normal }}$	$\mathcal{B}^{\text {general }}$

Normal vs. Generalised Büchi Automata: Example

$\mathcal{B}^{\text {normal }}$ with $\mathcal{F}=\{1,2\}, \quad \mathcal{B}^{\text {general }}$ with $\mathbb{F}=\{\overbrace{\{1\}}^{\mathcal{J}}, \overbrace{\{2\}}\}$
Which ω-word is accepted by which automaton?

ω-word	$\mathcal{B}^{\text {normal }}$	$\mathcal{B}^{\text {general }}$
$(a b)^{\omega}$		

Normal vs. Generalised Büchi Automata: Example

$\mathcal{B}^{\text {normal }}$ with $\mathcal{F}=\{1,2\}, \quad \mathcal{B}^{\text {general }}$ with $\mathbb{F}=\{\overbrace{\{1\}}^{\mathcal{J}}, \overbrace{\{2\}}\}$
Which ω-word is accepted by which automaton?

ω-word	$\mathcal{B}^{\text {normal }}$	$\mathcal{B}^{\text {general }}$
$(a b)^{\omega}$	\checkmark	

Normal vs. Generalised Büchi Automata: Example

$\mathcal{B}^{\text {normal }}$ with $\mathcal{F}=\{1,2\}, \quad \mathcal{B}^{\text {general }}$ with $\mathbb{F}=\{\overbrace{\{1\}}^{\mathcal{1}}, \overbrace{\{2\}}\}$
Which ω-word is accepted by which automaton?

ω-word	$\mathcal{B}^{\text {normal }}$	$\mathcal{B}^{\text {general }}$
$(a b)^{\omega}$	\nearrow	\boldsymbol{X}

Normal vs. Generalised Büchi Automata: Example

$\mathcal{B}^{\text {normal }}$ with $\mathcal{F}=\{1,2\}, \quad \mathcal{B}^{\text {general }}$ with $\mathbb{F}=\{\overbrace{\{1\}}^{\mathcal{1}}, \overbrace{\{2\}}\}$
Which ω-word is accepted by which automaton?

ω-word	$\mathcal{B}^{\text {normal }}$	$\mathcal{B}^{\text {general }}$
$(a b)^{\omega}$	\checkmark	\boldsymbol{X}
$(a a b)^{\omega}$		

Normal vs. Generalised Büchi Automata: Example

$\mathcal{B}^{\text {normal }}$ with $\mathcal{F}=\{1,2\}, \quad \mathcal{B}^{\text {general }}$ with $\mathbb{F}=\{\overbrace{\{1\}}^{\mathcal{1}}, \overbrace{\{2\}}\}$
Which ω-word is accepted by which automaton?

ω-word	$\mathcal{B}^{\text {normal }}$	$\mathcal{B}^{\text {general }}$
$(a b)^{\omega}$	\nearrow	X
$(a a b)^{\omega}$	\checkmark	

Normal vs. Generalised Büchi Automata: Example

$\mathcal{B}^{\text {normal }}$ with $\mathcal{F}=\{1,2\}, \quad \mathcal{B}^{\text {general }}$ with $\mathbb{F}=\{\overbrace{\{1\}}^{\mathcal{1}}, \overbrace{\{2\}}\}$
Which ω-word is accepted by which automaton?

ω-word	$\mathcal{B}^{\text {normal }}$	$\mathcal{B}^{\text {general }}$
$(a b)^{\omega}$	\checkmark	X
$(a a b)^{\omega}$	\checkmark	\checkmark

Fischer-Ladner Closure

Fischer-Ladner closure of an LTL-formula ϕ

$$
F L(\phi)=\{\varphi \mid \varphi \text { is subformula or negated subformula of } \phi\}
$$

Fischer-Ladner Closure

Fischer-Ladner closure of an LTL-formula ϕ
$F L(\phi)=\{\varphi \mid \varphi$ is subformula or negated subformula of $\phi\}$
($\neg \neg \varphi$ is identified with φ)

Fischer-Ladner Closure

Fischer-Ladner closure of an LTL-formula ϕ

$$
F L(\phi)=\{\varphi \mid \varphi \text { is subformula or negated subformula of } \phi\}
$$

($\neg \neg \varphi$ is identified with φ)

Example

$$
F L(r \mathcal{U} s)=\{r, \neg r, s, \neg s, r \mathcal{U} s, \neg(r \mathcal{U} s)\}
$$

\mathcal{B}_{ϕ}-Construction: Locations

Assumption:
\mathcal{U} only temporal logic operator in LTL-formula (can express \square, \diamond with \mathcal{U})

\mathcal{B}_{ϕ}-Construction: Locations

Assumption:
\mathcal{U} only temporal logic operator in LTL-formula (can express \square, \diamond with \mathcal{U}) Locations of \mathcal{B}_{ϕ} are $Q \subseteq 2^{F L(\phi)}$ where each $q \in Q$ satisfies:
Consistent, Total $\bullet \psi \in F L(\phi)$: exactly one of ψ and $\neg \psi$ in q

- $\psi_{1} \mathcal{U} \psi_{2} \in(F L(\phi) \backslash q)$ then $\psi_{2} \notin q$

Downward Closed $\psi_{1} \wedge \psi_{2} \in q: \psi_{1} \in q$ and $\psi_{2} \in q$

- ...other propositional connectives similar
- $\psi_{1} \mathcal{U} \psi_{2} \in q$ then $\psi_{1} \in q$ or $\psi_{2} \in q$

\mathcal{B}_{ϕ}-Construction: Locations

Assumption:
\mathcal{U} only temporal logic operator in LTL-formula (can express \square, \diamond with \mathcal{U}) Locations of \mathcal{B}_{ϕ} are $Q \subseteq 2^{F L(\phi)}$ where each $q \in Q$ satisfies:
Consistent, Total $\bullet \psi \in F L(\phi)$: exactly one of ψ and $\neg \psi$ in q

- $\psi_{1} \mathcal{U} \psi_{2} \in(F L(\phi) \backslash q)$ then $\psi_{2} \notin q$

Downward Closed $\psi_{1} \wedge \psi_{2} \in q: \psi_{1} \in q$ and $\psi_{2} \in q$

- ...other propositional connectives similar
- $\psi_{1} \mathcal{U} \psi_{2} \in q$ then $\psi_{1} \in q$ or $\psi_{2} \in q$

$$
F L(r \mathcal{U} s)=\{r, \neg r, s, \neg s, r \mathcal{U} s, \neg(r \mathcal{U} s)\}
$$

\qquad

\mathcal{B}_{ϕ}-Construction: Locations

Assumption:
\mathcal{U} only temporal logic operator in LTL-formula (can express \square, \diamond with \mathcal{U}) Locations of \mathcal{B}_{ϕ} are $Q \subseteq 2^{F L(\phi)}$ where each $q \in Q$ satisfies:
Consistent, Total $\bullet \psi \in F L(\phi)$: exactly one of ψ and $\neg \psi$ in q

- $\psi_{1} \mathcal{U} \psi_{2} \in(F L(\phi) \backslash q)$ then $\psi_{2} \notin q$

Downward Closed $\psi_{1} \wedge \psi_{2} \in q: \psi_{1} \in q$ and $\psi_{2} \in q$

- ...other propositional connectives similar
- $\psi_{1} \mathcal{U} \psi_{2} \in q$ then $\psi_{1} \in q$ or $\psi_{2} \in q$

$$
\begin{gathered}
F L(r \mathcal{U} s)=\{r, \neg r, s, \neg s, r \mathcal{U} s, \neg(r \mathcal{U} s)\} \\
\frac{\in Q}{\{r \mathcal{U} s, \neg r, s\}}
\end{gathered}
$$

\mathcal{B}_{ϕ}-Construction: Locations

Assumption:
\mathcal{U} only temporal logic operator in LTL-formula (can express \square, \diamond with \mathcal{U}) Locations of \mathcal{B}_{ϕ} are $Q \subseteq 2^{F L(\phi)}$ where each $q \in Q$ satisfies:
Consistent, Total $\bullet \psi \in F L(\phi)$: exactly one of ψ and $\neg \psi$ in q

- $\psi_{1} \mathcal{U} \psi_{2} \in(F L(\phi) \backslash q)$ then $\psi_{2} \notin q$

Downward Closed $\psi_{1} \wedge \psi_{2} \in q: \psi_{1} \in q$ and $\psi_{2} \in q$

- ...other propositional connectives similar
- $\psi_{1} \mathcal{U} \psi_{2} \in q$ then $\psi_{1} \in q$ or $\psi_{2} \in q$

$$
F L(r \mathcal{U} s)=\{r, \neg r, s, \neg s, r \mathcal{U} s, \neg(r \mathcal{U} s)\}
$$

	$\in Q$
$\{r \mathcal{U} s, \neg r, s\}$	\nearrow
$\{r \mathcal{U} s, \neg r, \neg s\}$	X

\mathcal{B}_{ϕ}-Construction: Locations

Assumption:
\mathcal{U} only temporal logic operator in LTL-formula (can express \square, \diamond with \mathcal{U}) Locations of \mathcal{B}_{ϕ} are $Q \subseteq 2^{F L(\phi)}$ where each $q \in Q$ satisfies:
Consistent, Total $\bullet \psi \in F L(\phi)$: exactly one of ψ and $\neg \psi$ in q

- $\psi_{1} \mathcal{U} \psi_{2} \in(F L(\phi) \backslash q)$ then $\psi_{2} \notin q$

Downward Closed $\psi_{1} \wedge \psi_{2} \in q: \psi_{1} \in q$ and $\psi_{2} \in q$

- ...other propositional connectives similar
- $\psi_{1} \mathcal{U} \psi_{2} \in q$ then $\psi_{1} \in q$ or $\psi_{2} \in q$

$$
\begin{aligned}
& F L(r \mathcal{U} s)=\{r, \neg r, s, \neg s, r \mathcal{U} s, \neg(r \mathcal{U} s)\} \\
& \\
& \begin{array}{ll}
& \in Q \\
\hline\{r \mathcal{U} s, \neg r, s\} & \mathscr{X} \\
\hline\{r \mathcal{U} s, \neg r, \neg s\} & X \\
\hline\{\neg(r \mathcal{U} s), r, s\} & X \\
\hline
\end{array}
\end{aligned}
$$

\mathcal{B}_{ϕ}-Construction: Locations

Assumption:
\mathcal{U} only temporal logic operator in LTL-formula (can express \square, \diamond with \mathcal{U}) Locations of \mathcal{B}_{ϕ} are $Q \subseteq 2^{F L(\phi)}$ where each $q \in Q$ satisfies:
Consistent, Total $\bullet \psi \in F L(\phi)$: exactly one of ψ and $\neg \psi$ in q

- $\psi_{1} \mathcal{U} \psi_{2} \in(F L(\phi) \backslash q)$ then $\psi_{2} \notin q$

Downward Closed $\psi_{1} \wedge \psi_{2} \in q: \psi_{1} \in q$ and $\psi_{2} \in q$

- ...other propositional connectives similar
- $\psi_{1} \mathcal{U} \psi_{2} \in q$ then $\psi_{1} \in q$ or $\psi_{2} \in q$

$$
\begin{aligned}
& F L(r \mathcal{U} s)=\{r, \neg r, s, \neg s, r \mathcal{U} s, \neg(r \mathcal{U} s)\} \\
& \begin{array}{ll}
& \in Q \\
\hline\{r \mathcal{U} s, \neg r, s\} & \nearrow \\
\hline\{r \mathcal{U} s, \neg r, \neg s\} & X \\
\hline\{\neg(r \mathcal{U} s), r, s\} & X \\
\hline\{\neg(r \mathcal{U} s), r, \neg s\} & \nearrow
\end{array}
\end{aligned}
$$

\mathcal{B}_{ϕ}-Construction: Transitions

$\underbrace{\{r \mathcal{U} s, \neg r, s\}}_{q_{1}}, \underbrace{\{r \mathcal{U} s, r, \neg s\}}_{q_{2}}, \underbrace{\{r \mathcal{U} s, r, s\}}_{q_{3}}, \underbrace{\{\neg(r \mathcal{U} s), r, \neg s\}}_{q_{4}}, \underbrace{\{\neg(r \mathcal{U} s), \neg r, \neg s\}}_{q_{5}}$

\mathcal{B}_{ϕ}-Construction: Transitions

$$
\underbrace{\{r \mathcal{U} s, \neg r, s\}}_{q_{1}}, \underbrace{\{r \mathcal{U} s, r, \neg s\}}_{q_{2}}, \underbrace{\{r \mathcal{U} s, r, s\}}_{q_{3}}, \underbrace{\{\neg(r \mathcal{U} s), r, \neg s\}}_{q_{4}}, \underbrace{\{\neg(r \mathcal{U} s), \neg r, \neg s\}}_{q_{5}}
$$

Transitions $\left(q, \alpha, q^{\prime}\right) \in \delta_{\phi}$:
$\alpha=q \cap \mathcal{P}$
\mathcal{P} set of propositional variables outgoing edges of q_{1} labeled $\{s\}$, of q_{2} labeled $\{r\}$, etc.

1. If $\psi_{1} \mathcal{U} \psi_{2} \in q$ and $\psi_{2} \notin q$ then $\psi_{1} \mathcal{U} \psi_{2} \in q^{\prime}$
2. If $\psi_{1} \mathcal{U} \psi_{2} \in(F L(\phi) \backslash q)$ and $\psi_{1} \in q$ then $\psi_{1} \mathcal{U} \psi_{2} \notin q^{\prime}$

\mathcal{B}_{ϕ}-Construction: Transitions

Transitions $\left(q, \alpha, q^{\prime}\right) \in \delta_{\phi}$:

$$
\alpha=q \cap \mathcal{P}
$$

\mathcal{P} set of propositional variables outgoing edges of q_{1} labeled $\{s\}$, of q_{2} labeled $\{r\}$, etc.

1. If $\psi_{1} \mathcal{U} \psi_{2} \in q$ and $\psi_{2} \notin q$ then $\psi_{1} \mathcal{U} \psi_{2} \in q^{\prime}$
2. If $\psi_{1} \mathcal{U} \psi_{2} \in(F L(\phi) \backslash q)$ and
$\psi_{1} \in q$ then $\psi_{1} \mathcal{U} \psi_{2} \notin q^{\prime}$

\mathcal{B}_{ϕ}-Construction: Transitions

Transitions $\left(q, \alpha, q^{\prime}\right) \in \delta_{\phi}$:
$\alpha=q \cap \mathcal{P}$
\mathcal{P} set of propositional variables outgoing edges of q_{1} labeled $\{s\}$, of q_{2} labeled $\{r\}$, etc.

1. If $\psi_{1} \mathcal{U} \psi_{2} \in q$ and $\psi_{2} \notin q$ then $\psi_{1} \mathcal{U} \psi_{2} \in q^{\prime}$
2. If $\psi_{1} \mathcal{U} \psi_{2} \in(F L(\phi) \backslash q)$ and
$\psi_{1} \in q$ then $\psi_{1} \mathcal{U} \psi_{2} \notin q^{\prime}$

\mathcal{B}_{ϕ}-Construction: Transitions

$$
\underbrace{\{r \mathcal{U} s, \neg r, s\}}_{q_{1}}, \underbrace{\{r \mathcal{U} s, r, \neg s\}}_{q_{2}}, \underbrace{\{r \mathcal{U} s, r, s\}}_{q_{3}}, \underbrace{\{\neg(r \mathcal{U} s), r, \neg s\}}_{q_{4}}, \underbrace{\{\neg(r \mathcal{U} s), \neg r, \neg s\}}_{q_{5}}
$$

Transitions $\left(q, \alpha, q^{\prime}\right) \in \delta_{\phi}$:
$\alpha=q \cap \mathcal{P}$
\mathcal{P} set of propositional variables outgoing edges of q_{1} labeled $\{s\}$, of q_{2} labeled $\{r\}$, etc.

1. If $\psi_{1} \mathcal{U} \psi_{2} \in q$ and $\psi_{2} \notin q$ then $\psi_{1} \mathcal{U} \psi_{2} \in q^{\prime}$
2. If $\psi_{1} \mathcal{U} \psi_{2} \in(F L(\phi) \backslash q)$ and $\psi_{1} \in q$ then $\psi_{1} \mathcal{U} \psi_{2} \notin q^{\prime}$

\mathcal{B}_{ϕ}-Construction: Transitions

$$
q \in I_{\phi} \text { iff } \phi \in q
$$

\mathcal{B}_{ϕ}-Construction: Transitions

Initial locations

$$
q \in I_{\phi} \text { iff } \phi \in q
$$

Accepting locations

$$
\mathbb{F}=\left\{\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right\}
$$

- One \mathcal{F}_{i} for each $\psi_{i 1} \mathcal{U} \psi_{i 2} \in F L(\phi)$; Example: $\mathbb{F}=\left\{\mathcal{F}_{1}\right\}$
- \mathcal{F}_{i} set of locations that do not contain $\psi_{i 1} \mathcal{U} \psi_{i 2}$ or that contain $\psi_{i 2}$
Ex.: $\mathcal{F}_{1}=\left\{q_{1}, q_{3}, q_{4}, q_{5}\right\}$

Remarks on Generalized Büchi Automata

- Construction always gives exponential number of states in $|\phi|$
- Satisfiability checking of LTL is PSPACE-complete
- There exist (more complex) constructions that minimize number of required states
- One of these is used in Spin, which moreover computes the states lazily

