Software Engineering using Formal Methods First-Order Logic

Wolfgang Ahrendt

25th September 2015

Follow instructions on course page, under: ⇒Links, Papers, and Software / Tools

We recommend using Java Web Start:

- Start KeY with two clicks (you need to trust our self-signed certificate)
- Java Web Start installed with standard JDK/JRE
- Usually browsers know filetype.
 Otherwise open KeY.jnlp with javaws.

Alternaively, install KeY locally, download from www.key-project.org.

Motivation for Introducing First-Order Logic

1) we specify JAVA programs with Java Modeling Language (JML)

JML combines

- JAVA expressions
- First-Order Logic (FOL)

2) we verify JAVA programs using Dynamic Logic

Dynamic Logic combines

- First-Order Logic (FOL)
- JAVA programs

we introduce:

- FOL as a language
- calculus for proving FOL formulas
- ▶ KeY system as propositional, and first-order, prover (for now)
- (formal semantics: if time)

Part I

The Language of FOL

First-Order Logic: Signature

Signature

A first-order signature $\boldsymbol{\Sigma}$ consists of

- a set T_Σ of types
- a set F_{Σ} of function symbols
- a set P_{Σ} of predicate symbols
- a typing α_{Σ}

intuitively, the typing $\alpha_{\pmb{\Sigma}}$ determines

- for each function and predicate symbol:
 - its arity, i.e., number of arguments
 - its argument types
- for each function symbol its result type.

formally:

• $\alpha_{\Sigma}(p) \in T_{\Sigma}^{*}$ for all $p \in P_{\Sigma}$ (arity of p is $|\alpha_{\Sigma}(p)|$)

• $\alpha_{\Sigma}(f) \in T_{\Sigma}^* \times T_{\Sigma}$ for all $f \in F_{\Sigma}$ (arity of f is $|\alpha_{\Sigma}(f)| - 1$)

Example Signature Σ_1 + Constants

$$\begin{split} & \mathcal{T}_{\Sigma_1} = \{\texttt{int}\}, \\ & \mathcal{F}_{\Sigma_1} = \{\texttt{+}, \texttt{-}\} \cup \{..., \texttt{-}2, \texttt{-}1, \texttt{0}, \texttt{1}, \texttt{2}, ...\}, \\ & \mathcal{P}_{\Sigma_1} = \{\texttt{<}\} \end{split}$$

$$\begin{aligned} &\alpha_{\Sigma_1}(<) = (\text{int,int}) \\ &\alpha_{\Sigma_1}(+) = \alpha_{\Sigma_1}(-) = (\text{int,int,int}) \\ &\alpha_{\Sigma_1}(0) = \alpha_{\Sigma_1}(1) = \alpha_{\Sigma_1}(-1) = \dots = (\text{int}) \end{aligned}$$

Constant Symbols

A function symbol f with $|\alpha_{\Sigma_1}(f)| = 1$ (i.e., with arity 0) is called *constant symbol*.

here, the constant symbols are: $\dots, -2, -1, 0, 1, 2, \dots$

Syntax of First-Order Logic: Signature Cont'd

Type declaration of signature symbols

- Write τ x; to declare variable x of type τ
- Write $p(\tau_1, \ldots, \tau_r)$; for $\alpha(p) = (\tau_1, \ldots, \tau_r)$
- Write τ $f(\tau_1, \ldots, \tau_r)$; for $\alpha(f) = (\tau_1, \ldots, \tau_r, \tau)$

r = 0 is allowed, then write f instead of f(), etc.

Example

Variables integerArray a; int i; Predicate Symbols isEmpty(List); alertOn; Function Symbols int arrayLookup(int); Object o; typing of Signature:

$$\begin{aligned} &\alpha_{\Sigma_1}(<) = (\texttt{int},\texttt{int}) \\ &\alpha_{\Sigma_1}(+) = \alpha_{\Sigma_1}(-) = (\texttt{int},\texttt{int},\texttt{int}) \\ &\alpha_{\Sigma_1}(0) = \alpha_{\Sigma_1}(1) = \alpha_{\Sigma_1}(-1) = \dots = (\texttt{int}) \end{aligned}$$

can alternatively be written as:

```
<(int,int);
int +(int,int);
int 0; int 1; int -1; ...
```

First-Order Terms

We assume a set V of variables $(V \cap (F_{\Sigma} \cup P_{\Sigma}) = \emptyset)$. Each $v \in V$ has a unique type $\alpha_{\Sigma}(v) \in T_{\Sigma}$.

Terms are defined recursively:

Terms

A first-order term of type $au \in T_{\Sigma}$

- is either a variable of type τ, or
- ▶ has the form $f(t_1, ..., t_n)$, where $f \in F_{\Sigma}$ has result type τ , and each t_i is term of the correct type, following the typing α_{Σ} of f.

If f is a constant symbol, the term is written f, instead of f().

Terms over Signature Σ_1

example terms over Σ_1 : (assume variables int v_1 ; int v_2 ;)

some variants of FOL allow infix notation of functions:

$$(v_1 - 8) + v_2$$

Atomic Formulas

Atomic Formulas

Given a signature Σ . An atomic formula has either of the forms

- ► true
- false
- ► t₁ = t₂ ("equality"), where t₁ and t₂ are first-order terms of the same type.
- p(t₁,..., t_n) ("predicate"), where p ∈ P_Σ, and each t_i is term of the correct type, following the typing α_Σ of p.

example formulas over Σ_1 : (assume variable int v;)

7 = 8
7 < 8
-2 - v < 99
v < (v + 1)

First-order Formulas

Formulas

- each atomic formula is a formula
- with φ and ψ formulas, x a variable, and τ a type, the following are also formulas:

•
$$\neg \phi$$
 ("not ϕ ")

•
$$\phi \land \psi$$
 (" ϕ and ψ ")

$$\bullet \phi \lor \psi \quad (``\phi \text{ or } \psi'')$$

•
$$\phi \rightarrow \psi$$
 (" ϕ implies ψ ")

•
$$\phi \leftrightarrow \psi$$
 (" ϕ is equivalent to ψ ")

- $\forall \tau x; \phi$ ("for all x of type τ holds ϕ ")
- ▶ $\exists \tau x; \phi$ ("there exists an x of type τ such that ϕ ")

In $\forall \tau x$; ϕ and $\exists \tau x$; ϕ the variable x is 'bound' (i.e., 'not free'). Formulas with no free variable are 'closed'.

First-order Formulas: Examples

(signatures/types left out here)

Example (There are at least two elements) $\exists x, y; \neg(x = y)$

Example (Strict partial order)

 $\begin{array}{ll} \text{Irreflexivity} & \forall x; \neg (x < x) \\ \text{Asymmetry} & \forall x; \forall y; (x < y \rightarrow \neg (y < x)) \\ \text{Transitivity} & \forall x; \forall y; \forall z; \\ & (x < y \land y < z \rightarrow x < z) \end{array}$

(is any of the three formulas redundant?)

Semantics (briefly here, more thorough later)

Domain

A domain ${\cal D}$ is a set of elements which are (potentially) the meaning of terms and variables.

Interpretation

An interpretation \mathcal{I} (over \mathcal{D}) assigns *meaning* to the symbols in $F_{\Sigma} \cup P_{\Sigma}$ (assigning functions to function symbols, relations to predicate symbols).

Valuation

In a given \mathcal{D} and \mathcal{I} , a closed formula evaluates to either T or F.

Validity

A closed formula is valid if it evaluates to T in all D and I.

In the context of specification/verification of programs: each $(\mathcal{D}, \mathcal{I})$ is called a 'state'.

Useful Valid Formulas

Let ϕ and ψ be arbitrary, closed formulas (whether valid or not). The following formulas are valid:

$$\blacktriangleright \neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$$

- $\blacktriangleright \neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- (true $\land \phi$) $\leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- true $\lor \phi$
- \neg (false $\land \phi$)
- $\blacktriangleright (\phi \to \psi) \leftrightarrow (\neg \phi \lor \psi)$
- $\phi \rightarrow true$
- false $\rightarrow \phi$
- $(true \rightarrow \phi) \leftrightarrow \phi$
- $(\phi \rightarrow \textit{false}) \leftrightarrow \neg \phi$

Assume that x is the only variable which may appear freely in ϕ or ψ .

The following formulas are valid:

$$\neg (\exists \tau x; \phi) \leftrightarrow \forall \tau x; \neg \phi \neg (\forall \tau x; \phi) \leftrightarrow \exists \tau x; \neg \phi \land (\forall \tau x; \phi \land \psi) \leftrightarrow (\forall \tau x; \phi) \land (\forall \tau x; \psi) \land (\exists \tau x; \phi \lor \psi) \leftrightarrow (\exists \tau x; \phi) \lor (\exists \tau x; \psi)$$

Are the following formulas also valid?

$$\bullet \quad (\forall \ \tau \ x; \ \phi \lor \psi) \leftrightarrow (\forall \ \tau \ x; \ \phi) \lor (\forall \ \tau \ x; \ \psi)$$

$$\blacktriangleright (\exists \tau x; \phi \land \psi) \leftrightarrow (\exists \tau x; \phi) \land (\exists \tau x; \psi)$$

Remark on Concrete Syntax

	Text book	Spin	KeY
Negation	_	!	!
Conjunction	\wedge	&&	&
Disjunction	\vee		
Implication	$ ightarrow,\supset$	->	->
Equivalence	\leftrightarrow	<->	<->
Universal Quantifier	$\forall x; \phi$	n/a	$\int forall au x; \phi$
Existential Quantifier	$\exists x; \phi$	n/a	$\forall \texttt{exists} \ au \ \texttt{x}; \ \phi$
Value equality	=	==	=

Part II

Sequent Calculus for FOL

Motivation for a Sequent Calculus

How to show a formula valid in propositional logic? \rightarrow use a semantic truth table.

How about FOL? Formula: $isEven(x) \lor isOdd(x)$

x	isEven(x)	isOdd(x)	$isEven(x) \lor isOdd(x)$
1	F	Т	Т
2	T	F	Т

And what about the interpretation of isOdd and isEqual?

Checking validity via semantics does not work.

Reasoning by Syntactic Transformation

Prove Validity of ϕ by syntactic transformation of ϕ

Logic Calculus: Sequent Calculus based on notion of sequent:

has same meaning as

$$(\psi_1 \wedge \cdots \wedge \psi_m) \quad \rightarrow \quad (\phi_1 \vee \cdots \vee \phi_n)$$

which has (for closed formulas ψ_i, ϕ_i) same meaning as

$$\{\psi_1,\ldots,\psi_m\} \models \phi_1 \lor \cdots \lor \phi_m$$

Notation for Sequents

$$\psi_1,\ldots,\psi_m \implies \phi_1,\ldots,\phi_n$$

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

 ϕ, ψ, \ldots match formulas, Γ, Δ, \ldots match sets of formulas Characterize infinitely many sequents with single schematic sequent, e.g.,

$$f \Rightarrow \phi \land \psi, \Delta$$

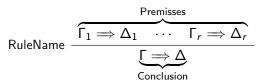
Matches any sequent with occurrence of conjunction in succedent

Call $\phi \land \psi$ main formula and Γ, Δ side formulas of sequent

Any sequent of the form $\Gamma, \phi \implies \phi, \Delta$ is logically valid: axiom

Sequent Calculus Rules

Write syntactic transformation schema for sequents that reflects semantics of connectives as closely as possible



Meaning: For proving the Conclusion, it suffices to prove all Premisses. **Example**

and Right
$$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \land \psi, \Delta}$$

Admissible to have no premisses (iff conclusion is valid, e.g., axiom)

A rule is sound (correct) iff the validity of its premisses implies the validity of its conclusion.

SEFM: First-Order Logic

'Propositional' Sequent Calculus Rules

Sequent Calculus Proofs

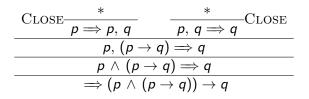
Goal to prove: $\mathcal{G} = -\psi_1, \dots, \psi_m \implies \phi_1, \dots, \phi_n$

- find rule \mathcal{R} whose conclusion matches \mathcal{G}
- \blacktriangleright instantiate ${\cal R}$ such that its conclusion is identical to ${\cal G}$
- apply that instantiation to all premisses of \mathcal{R} , resulting in new goals $\mathcal{G}_1, \ldots, \mathcal{G}_r$
- recursively find proofs for $\mathcal{G}_1, \ldots, \mathcal{G}_r$
- tree structure with goal as root
- close proof branch when rule without premiss encountered

Goal-directed proof search

In KeY tool proof displayed as JAVA Swing tree

A Simple Proof



A proof is closed iff all its branches are closed

Demo

prop.key

Proving a universally quantified formula Claim: $\forall \tau x$; ϕ is true How is such a claim proved in mathematics? All even numbers are divisible by 2 $\forall int x$; $(even(x) \rightarrow divByTwo(x))$ Let c be an arbitrary number Declare "unused" constant int c The even number c is divisible by 2 prove $even(c) \rightarrow divByTwo(c)$

Sequent rule \forall -right

forallRight
$$\frac{\Gamma \Longrightarrow [x/c] \phi, \Delta}{\Gamma \Longrightarrow \forall \tau x; \phi, \Delta}$$

- $[x/c] \phi$ is result of replacing each occurrence of x in ϕ with c
- c **new** constant of type τ

Proving an existentially quantified formula				
Claim: $\exists \tau x; \phi$ is true				
How is such a claim proved in mathematics?				
There is at least one prime number	$\exists int x; prime(x)$			
Provide any "witness", say, 7	Use variable-free term int 7			
7 is a prime number	prime(7)			

Sequent rule ∃-right

existsRight
$$\frac{\Gamma \Longrightarrow [x/t] \phi, \ \exists \tau x; \ \phi, \Delta}{\Gamma \Longrightarrow \exists \tau x; \ \phi, \Delta}$$

- t any variable-free term of type τ
- Proof might not work with t! Need to keep premise to try again

Using a universally quantified formula

We assume $\forall \tau x; \phi$ is true

How is such a fact used in a mathematical proof?

We know that all primes are odd $\forall \operatorname{int} x$; (prime(x) $\rightarrow \operatorname{odd}(x)$)

Use variable-free term int 17 In particular, this holds for 17 We know: if 17 is prime it is odd

 $prime(17) \rightarrow odd(17)$

Sequent rule ∀-left

$$\text{forallLeft} \ \frac{\left[\mathsf{\Gamma}, \forall \, \tau \, x; \, \phi, \, [x/t'] \, \phi \Longrightarrow \Delta \right]}{\left[\mathsf{\Gamma}, \forall \, \tau \, x; \, \phi \Longrightarrow \Delta \right]}$$

• t' any variable-free term of type τ

• We might need other instances besides t'! Keep premise $\forall \tau x; \phi$

Using an existentially quantified formula

We assume $\exists \tau x; \phi$ is true

How is such a fact used in a mathematical proof?

We know such an element exists. Let's give it a new name for future reference.

Sequent rule ∃-left

existsLeft
$$\frac{\Gamma, [x/c] \phi \Longrightarrow \Delta}{\Gamma, \exists \tau x; \phi \Longrightarrow \Delta}$$

• c new constant of type τ

Using an equation between terms

We assume t = t' is true

How is such a fact used in a mathematical proof?

Use x = y-1 to simplify x+1/y $x = y-1 \Longrightarrow 1 = x+1/y$

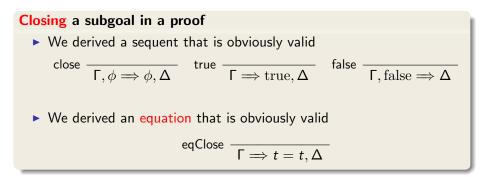
Replace x in conclusion with right-hand side of equation

We know: x+1/y equal to y-1+1/y $x = y-1 \Longrightarrow 1 = y-1+1/y$

Sequent rule =-left

$$\begin{array}{c} \mathsf{applyEqL} \quad \frac{ \Gamma, t = t', [t/t'] \, \phi \Longrightarrow \Delta }{ \Gamma, t = t', \phi \Longrightarrow \Delta } \quad \mathsf{applyEqR} \quad \frac{ \Gamma, t = t' \Longrightarrow [t/t'] \, \phi, \Delta }{ \Gamma, t = t' \Longrightarrow \phi, \Delta } \end{array}$$

- Always replace left- with right-hand side (use eqSymm if necessary)
- t,t' variable-free terms of the same type



Sequent Calculus for FOL at One Glance

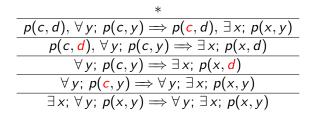
	left side, antecedent	right side, succedent
A	$ \frac{\Gamma, \forall \tau x; \phi, [x/t'] \phi \Rightarrow \Delta}{\Gamma, \forall \tau x; \phi \Rightarrow \Delta} $ $ \frac{\Gamma, [x/c] \phi \Rightarrow \Delta}{\Gamma, \exists \tau x; \phi \Rightarrow \Delta} $	$ \frac{\Gamma \Longrightarrow [x/c] \phi, \Delta}{\Gamma \Longrightarrow \forall \tau x; \phi, \Delta} \\ \frac{\Gamma \Longrightarrow [x/t'] \phi, \exists \tau x; \phi, \Delta}{\Gamma \Longrightarrow \exists \tau x; \phi, \Delta} $
=	$\frac{\Gamma, t = t' \Longrightarrow [t/t'] \phi, \Delta}{\Gamma, t = t' \Longrightarrow \phi, \Delta}$ (+ application rule on left side)	$\Gamma \Longrightarrow t = t, \Delta$

- $[t/t'] \phi$ is result of replacing each occurrence of t in ϕ with t'
- t,t' variable-free terms of type τ
- c new constant of type τ (occurs not on current proof branch)
- Equations can be reversed by commutativity

Recap: 'Propositional' Sequent Calculus Rules

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, \neg \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \land \psi, \Delta}$
or	$ \begin{array}{c} \hline \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \lor \psi \Longrightarrow \Delta \end{array} $	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \lor \psi, \Delta}$
imp	$\begin{array}{c c} \Gamma \Longrightarrow \phi, \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \to \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \to \psi, \Delta}$
clos	$e \overline{\Gamma, \phi \Longrightarrow \phi, \Delta} true \overline{\Gamma \Longrightarrow}$	$\overline{} false \overline{} false \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$

Example (A simple theorem about binary relations)



Untyped logic: let static type of x and y be \top \exists -left: substitute new constant c of type \top for x \forall -right: substitute new constant d of type \top for y \forall -left: free to substitute any term of type \top for y, choose d \exists -right: free to substitute any term of type \top for x, choose c Close

Proving Validity of First-Order Formulas Cont'd

Using an existentially quantified formula

Let x, y denote integer constants, both are not zero. We know further that x divides y.

Show: (y/x) * x = y ('/' is division on integers, i.e. the equation is not always true, e.g. x = 2, y = 1)

Proof: We know x divides y, i.e. there exists a k such that k * x = y. Let now c denote such a k. Hence we can replace y by c * x on the right side. ...

$$\frac{}{\begin{array}{c} \vdots \\ \hline \neg(x=0), \neg(y=0), c * x = y \Longrightarrow ((c * x)/x) * x = y \\ \hline \neg(x=0), \neg(y=0), c * x = y \Longrightarrow (y/x) * x = y \\ \hline \neg(x=0), \neg(y=0), \exists \text{ int } k; k * x = y \Longrightarrow (y/x) * x = y
\end{array}}$$

Features of the KeY Theorem Prover

Demo

rel.key, twoInstances.key

Feature List

- Can work on multiple proofs simultaneously (task list)
- Proof trees visualized as JAVA Swing tree
- Point-and-click navigation within proof
- Undo proof steps, prune proof trees
- Pop-up menu with proof rules applicable in pointer focus
- Preview of rule effect as tool tip
- Quantifier instantiation and equality rules by drag-and-drop
- Possible to hide (and unhide) parts of a sequent
- Saving and loading of proofs

Literature for this Lecture

essential:

- ► W. Ahrendt, Using KeY Chapter 10 in [KeYbook]
- W. Ahrendt, S. Grebing Using the KeY Prover to appear in the new KeY Book (see Google group)

further reading:

- M. Giese, First-Order Logic, Chapter 2 in [KeYbook]
- KeYbook B. Beckert, R. Hähnle, and P. Schmitt, editors, Verification of Object-Oriented Software: The KeY Approach, vol 4334 of LNCS (Lecture Notes in Computer Science), Springer, 2006 (access via Chalmers library → E-books → Lecture Notes in Computer Science)

Part III

First-Order Semantics

First-Order Semantics

From propositional to first-order semantics

- ▶ In prop. logic, an interpretation of variables with $\{T, F\}$ sufficed
- In first-order logic we must assign meaning to:
 - variables bound in quantifiers
 - constant and function symbols
 - predicate symbols
- Each variable or function value may denote a different item
- Respect typing: int i, List 1 must denote different items

What we need (to interpret a first-order formula)

- 1. A collection of typed universes of items
- 2. A mapping from variables to items
- 3. A mapping from function arguments to function values
- 4. The set of argument tuples where a predicate is true

First-Order Domains/Universes

1. A collection of typed universes of items

Definition (Universe/Domain)

A non-empty set \mathcal{D} of items is a <u>universe</u> or <u>domain</u> Each element of \mathcal{D} has a fixed type given by $\delta: \mathcal{D} \to \tau$

- ▶ Notation for the domain elements of type $\tau \in \mathcal{T}$: $\mathcal{D}^{\tau} = \{ d \in \mathcal{D} \mid \delta(d) = \tau \}$
- Each type $\tau \in \mathcal{T}$ must 'contain' at least one domain element: $\mathcal{D}^{\tau} \neq \emptyset$

- 3. A mapping from function arguments to function values
- 4. The set of argument tuples where a predicate is true

Definition (First-Order State)

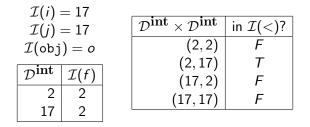
Let \mathcal{D} be a domain with typing function δ Let f be declared as τ $f(\tau_1, \ldots, \tau_r)$; Let p be declared as $p(\tau_1, \ldots, \tau_r)$; Let $\mathcal{I}(f) : \mathcal{D}^{\tau_1} \times \cdots \times \mathcal{D}^{\tau_r} \to \mathcal{D}^{\tau}$ Let $\mathcal{I}(p) \subseteq \mathcal{D}^{\tau_1} \times \cdots \times \mathcal{D}^{\tau_r}$

Then $\mathcal{S} = (\mathcal{D}, \delta, \mathcal{I})$ is a first-order state

First-Order States Cont'd

Example

Signature: int i; short j; int f(int); Object obj; <(int,int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short



One of uncountably many possible first-order states!

Definition

Equality symbol = declared as = (\top, \top)

Interpretation is fixed as $\mathcal{I}(=) = \{(d, d) \mid d \in \mathcal{D}\}$ "Referential Equality" (holds if arguments refer to identical item)

Exercise: write down the predicate table for example domain

- Domain elements different from the terms representing them
- First-order formulas and terms have no access to domain

Example

Signature: Object obj1, obj2; Domain: $\mathcal{D} = \{o\}$

In this state, necessarily $\mathcal{I}(\texttt{obj1}) = \mathcal{I}(\texttt{obj2}) = o$

Variable Assignments

2. A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements It respects the variable type, i.e., if x has type τ then $\beta(x) \in D^{\tau}$

Definition (Modified Variable Assignment)

Let y be variable of type au, β variable assignment, $d \in \mathcal{D}^{ au}$:

$$\beta_y^d(x) := \begin{cases} \beta(x) & x \neq y \\ d & x = y \end{cases}$$

Given a first-order state S and a variable assignment β it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

 $\mathit{val}_{\mathcal{S},\beta}:\mathsf{Term} o\mathcal{D} \mathsf{ such that } \mathit{val}_{\mathcal{S},\beta}(t)\in\mathcal{D}^{ au} \mathsf{ for } t\in\mathsf{Term}_{ au}:$

•
$$val_{\mathcal{S},\beta}(x) = \beta(x)$$

 $\blacktriangleright val_{\mathcal{S},\beta}(f(t_1,\ldots,t_r)) = \mathcal{I}(f)(val_{\mathcal{S},\beta}(t_1),\ldots,val_{\mathcal{S},\beta}(t_r))$

Semantic Evaluation of Terms Cont'd

Example

Signature: int i; short j; int f(int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short Variables: Object obj; int x;

$\mathcal{I}(i) = 17$	$\mathcal{D}^{\mathbf{int}}$	$\mathcal{I}(f)$	Var	β
$\mathcal{I}(j) = 17$ $\mathcal{I}(j) = 17$	2	17	obj	0
$\mathcal{L}(\mathbf{J}) = \mathbf{I}$	17	2	x	17

► val_{S,β}(f(f(i))) ?

•
$$val_{\mathcal{S},\beta}(x)$$
 ?

Definition (Valuation of Formulas)

 $\mathsf{val}_{\mathcal{S},\beta}(\phi)$ for $\phi \in \mathsf{For}$

- $\blacktriangleright val_{\mathcal{S},\beta}(p(t_1,\ldots,t_r)=T \quad \text{iff} \quad (val_{\mathcal{S},\beta}(t_1),\ldots,val_{\mathcal{S},\beta}(t_r)) \in \mathcal{I}(p)$
- $val_{\mathcal{S},\beta}(\phi \wedge \psi) = T$ iff $val_{\mathcal{S},\beta}(\phi) = T$ and $val_{\mathcal{S},\beta}(\psi) = T$
- ...as in propositional logic
- ► $val_{S,\beta}(\forall \tau x; \phi) = T$ iff $val_{S,\beta_x^d}(\phi) = T$ for all $d \in D^{\tau}$
- ► $val_{S,\beta}(\exists \tau x; \phi) = T$ iff $val_{S,\beta_x^d}(\phi) = T$ for at least one $d \in D^{\tau}$

Semantic Evaluation of Formulas Cont'd

Example

Signature: short j; int f(int); Object obj; <(int,int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short

$\mathcal{I}(j)$		$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
$\mathcal{I}(\texttt{obj}$) = 0	(2,2)	F
\mathcal{D}^{int}	$\mathcal{I}(f)$	(2,17)	Т
2	2	(17,2)	F
17	2	(17, 17)	F

•
$$val_{\mathcal{S},\beta}(f(j) < j)$$
 ?

•
$$val_{\mathcal{S},\beta}(\exists int x; f(x) = x) ?$$

▶ $val_{S,\beta}(\forall \text{ Object } o1; \forall \text{ Object } o2; o1 = o2) ?$

Semantic Notions

Definition (Satisfiability, Truth, Validity)

$$\begin{array}{ll} \operatorname{val}_{\mathcal{S},\beta}(\phi) = T & (\phi \text{ is satisfiable}) \\ \mathcal{S} \models \phi & \text{iff for all } \beta : \operatorname{val}_{\mathcal{S},\beta}(\phi) = T & (\phi \text{ is true in } \mathcal{S}) \\ \models \phi & \text{iff for all } \mathcal{S} : \ \mathcal{S} \models \phi & (\phi \text{ is valid}) \end{array}$$

Closed formulas that are satisfiable are also true: one top-level notion

Example

- f(j) < j is true in S
- ▶ $\exists int x; i = x is valid$
- ▶ $\exists int x; \neg(x = x)$ is not satisfiable