Software Engineering using Formal Methods Reasoning about Programs with Dynamic Logic

Wolfgang Ahrendt

6 October 2015

Part I

Where are we?

before specification of JAVA programs with JML now dynamic logic (DL) for resoning about JAVA programs after that generating DL from JML+JAVA + verifying the resulting proof obligations

Motivation

Consider the method

```
public void doubleContent(int[] a) {
    int i = 0;
    while (i < a.length) {
        a[i] = a[i] * 2;
        i++;
    }
}</pre>
```

We want a logic/calculus allowing to express/prove properties like, e.g.:

If a \neq null then doubleContent terminates normally and afterwards all elements of a are twice the old value

Motivation Cont'd

One such logic is dynamic logic (DL)

The above statement can be expressed in DL as follows: (assuming a suitable signature)

 $\begin{array}{l} a \neq \texttt{null} \\ \land a \neq \texttt{old}_a \\ \land \forall \texttt{int } \texttt{i;((0 \leq i \land i < \texttt{a.length}) \rightarrow \texttt{a[i]} = \texttt{old}_\texttt{a[i]})} \\ \rightarrow & \langle \texttt{doubleContent(a);} \rangle \\ \forall \texttt{int } \texttt{i;((0 \leq i \land i < \texttt{a.length}) \rightarrow \texttt{a[i]} = 2 * \texttt{old}_\texttt{a[i]})} \end{array}$

Observations

- DL combines first-order logic (FOL) with programs
- Theory of DL extends theory of FOL

introducing dynamic logic for JAVA

- recap first-order logic (FOL)
- semantics of FOL
- dynamic logic = extending FOL with
 - dynamic interpretations
 - programs to describe state change

Repetition: First-Order Logic

Signature

A first-order signature Σ consists of

- \blacktriangleright a set T_{Σ} of type symbols
- \blacktriangleright a set F_{Σ} of function symbols
- a set P_{Σ} of predicate symbols

Type Declarations

τ x:

- 'variable x has type τ '
- $p(\tau_1, \ldots, \tau_r);$
- 'predicate p has argument types τ_1, \ldots, τ_r '
- $\succ \tau f(\tau_1,\ldots,\tau_r);$
- - 'function f has argument types τ_1, \ldots, τ_r and result type τ'

Part II

First-Order Semantics

First-Order Semantics

From propositional to first-order semantics

- ▶ In prop. logic, an interpretation of variables with $\{T, F\}$ sufficed
- In first-order logic we must assign meaning to:
 - function symbols (incl. constants)
 - predicate symbols

Respect typing: int i, List 1 must denote different elements

What we need (to interpret a first-order formula)

- 1. A collection of typed universes of elements
- 2. A mapping from variables to elements
- 3. For each function symbol, a mapping from arguments to results
- 4. For each predicate symbol, a set of argument tuples where that predicate holds

First-Order Domains/Universes

1. A collection of typed universes of elements

Definition (Universe/Domain)

A non-empty set \mathcal{D} of elements is a universe or domain. Each element of \mathcal{D} has a fixed type given by $\delta : \mathcal{D} \to T_{\Sigma}$

- Notation for the domain elements of type τ ∈ T_Σ:
 D^τ = {d ∈ D | δ(d) = τ}
- Each type $\tau \in T_{\Sigma}$ must 'contain' at least one domain element: $\mathcal{D}^{\tau} \neq \emptyset$

First-Order States

- 3. For each function symbol, a mapping from arguments to results
- 4. For each predicate symbol, a set of argument tuples where that predicate holds

Definition (First-Order State)

Let \mathcal{D} be a domain with typing function δ . For each f be declared as $\tau f(\tau_1, \ldots, \tau_r)$; and each p be declared as $p(\tau_1, \ldots, \tau_r)$;

 $\mathcal{I}(f)$ is a mapping $\mathcal{I}(f) : \mathcal{D}^{\tau_1} \times \cdots \times \mathcal{D}^{\tau_r} \to \mathcal{D}^{\tau}$ $\mathcal{I}(p)$ is a set $\mathcal{I}(p) \subseteq \mathcal{D}^{\tau_1} \times \cdots \times \mathcal{D}^{\tau_r}$

Then $\mathcal{S} = (\mathcal{D}, \delta, \mathcal{I})$ is a first-order state

First-Order States Cont'd

Example

Signature $\Sigma:$ int i; int j; int f(int); Object obj; <(int,int); $\mathcal{D}=\{17,\,2,\,o\}$

The following \mathcal{I} is a possible interpretation:

$\mathcal{I}(i)$	= 17		
$\mathcal{I}(j)$		$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
I(obj) = o	(2,2)	no
Dint	$\mathcal{I}(f)$	(2,17)	yes
	L(T)	(17,2)	no
2	2	(17, 17)	no
17	2		

One of uncountably many possible first-order states!

Definition

Reserved predicate symbol for equality: =

Interpretation is fixed as $\mathcal{I}(=) = \{(d, d) \mid d \in \mathcal{D}\}$

Exercise: write down all elements of the set $\mathcal{I}(=)$ for example domain

- Domain elements different from the terms representing them
- First-order formulas and terms have no access to domain

Example

Signature Σ : Object obj1, obj2; Domain: $\mathcal{D} = \{o\}$

In this state, necessarily $\mathcal{I}(\texttt{obj1}) = \mathcal{I}(\texttt{obj2}) = o$

2. A mapping from variables to domain elements

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements. It respects the variable type, i.e., if x has type τ then $\beta(x) \in \mathcal{D}^{\tau}$.

Given a first-order state S and a variable assignment β it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

 $\mathit{val}_{\mathcal{S},\beta}:\mathsf{Term} o\mathcal{D}$ such that $\mathit{val}_{\mathcal{S},\beta}(t)\in\mathcal{D}^{ au}$ for $t\in\mathsf{Term}_{ au}$:

•
$$val_{\mathcal{S},\beta}(x) = \beta(x)$$

 $\blacktriangleright val_{\mathcal{S},\beta}(f(t_1,\ldots,t_r)) = \mathcal{I}(f)(val_{\mathcal{S},\beta}(t_1),\ldots,val_{\mathcal{S},\beta}(t_r))$

Semantic Evaluation of Terms Cont'd

Example

Signature Σ : int i; int j; int f(int); $\mathcal{D} = \{17, 2, o\}$ Variables: Object obj; int x;

$\mathcal{I}(\mathtt{i}) = 17$	$\mathcal{D}^{\mathbf{int}}$	$\mathcal{I}(\mathtt{f})$	Var	β
I(j) = 17 I(j) = 17	2	17	obj	0
$\mathcal{L}(J) = II$	17	2	x	17

- $val_{S,\beta}(f(f(i)))$?
- $val_{S,\beta}(f(f(x)))$?
- ► val_{S,β}(obj) ?

Preparing for Semantic Evaluation of Formulas

Definition (Modified Variable Assignment)

Let y be variable of type au, eta variable assignment, $d \in \mathcal{D}^{ au}$:

$$\beta_y^d(x) := \begin{cases} \beta(x) & x \neq y \\ d & x = y \end{cases}$$

Needed for semantics of quantifiers.

Definition (Valuation of Formulas)

 $\mathsf{val}_{\mathcal{S},\beta}(\phi)$ for $\phi \in \mathsf{For}$

$$\blacktriangleright val_{\mathcal{S},\beta}(p(t_1,\ldots,t_r)) = \mathcal{T} \quad \text{iff} \quad (val_{\mathcal{S},\beta}(t_1),\ldots,val_{\mathcal{S},\beta}(t_r)) \in \mathcal{I}(p)$$

- $val_{\mathcal{S},\beta}(\phi \wedge \psi) = T$ iff $val_{\mathcal{S},\beta}(\phi) = T$ and $val_{\mathcal{S},\beta}(\psi) = T$
- ▶ (also true, false, \lor , \neg , \rightarrow , \leftrightarrow like valuation in propositional logic)
- ► $val_{S,\beta}(\forall \tau x; \phi) = T$ iff $val_{S,\beta^d}(\phi) = T$ for all $d \in D^{\tau}$
- ► $val_{S,\beta}(\exists \tau x; \phi) = T$ iff $val_{S,\beta_x^d}(\phi) = T$ for at least one $d \in D^{\tau}$

Semantic Evaluation of Formulas Cont'd

Example

Signature Σ : int j; int f(int); Object obj; <(int,int); $\mathcal{D} = \{17, 2, o\}, \mathcal{D}^{int} = \{17, 2\}, \mathcal{D}^{Object} = \{o\}$

$\mathcal{I}(j)$		$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	$^{ ext{t}}$ in $\mathcal{I}(<)?$
$\mathcal{I}(\texttt{obj}$) = 0	(2,2	2) F
\mathcal{D}^{int}	$\mathcal{I}(f)$	(2,17	') T
2	2	(17,2	2) F
17	2	(17, 17	') F

•
$$val_{\mathcal{S},\beta}(f(j) < j)$$
 ?

•
$$val_{\mathcal{S},\beta}(\exists int x; f(x) = x) ?$$

▶ $val_{S,\beta}(\forall \text{ Object } o1; \forall \text{ Object } o2; o1 = o2) ?$

Semantic Notions

Definition (Truth, Satisfiability, Validity)

$$\begin{array}{ll} \operatorname{val}_{\mathcal{S},\beta}(\phi) = T & (\mathcal{S},\beta \text{ satisfies } \phi) \\ \mathcal{S} \models \phi & \text{iff for all } \beta : \operatorname{val}_{\mathcal{S},\beta}(\phi) = T & (\phi \text{ is true in } \mathcal{S}) \\ \text{SAT}(\phi) & \text{iff for some } \mathcal{S} : \mathcal{S} \models \phi & (\phi \text{ is satisfiable}) \\ \models \phi & \text{iff for all } \mathcal{S} : \mathcal{S} \models \phi & (\phi \text{ is valid}) \end{array}$$

Example

- f(j) < j is true in S
- ▶ $\exists int x; i = x is valid$
- ▶ $\exists int x; \neg(x = x)$ is not satisfiable

Part III

Towards Dynamic Logic

Reasoning about Java programs requires extensions of FOL

- JAVA type hierarchy
- JAVA program variables
- JAVA heap for reference types (next lecture)

Type Hierarchy

Definition (Type Hierarchy)

- T_Σ is set of types
- Subtype relation $\sqsubseteq \subseteq T_{\Sigma} \times T_{\Sigma}$ with top element \top
 - $\tau \sqsubseteq \top$ for all $\tau \in T_{\Sigma}$

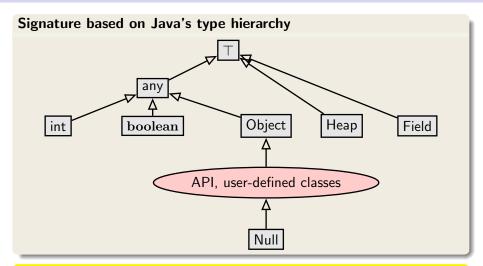
Example (A Minimal Type Hierarchy)

 $\mathcal{T}_{\Sigma} = \{\top\} \\ \text{All signature symbols have same type } \top$

Example (Type Hierarchy for Java)

(see next slide)

Modelling Java in FOL: Fixing a Type Hierarchy

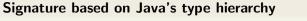


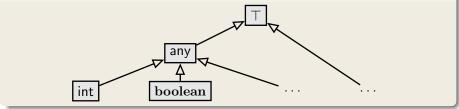
Each interface and class in API and in target program becomes type with appropriate subtype relation

SEFM: DL 1

CHALMERS/GU

Subset of Types





int and boolean are the only types for today Class, interface types, etc., in next lecture

Modelling Dynamic Properties

Only static properties expressable in typed FOL, e.g.,

- Values of fields in a certain range
- Property (invariant) of a subclass implies property of a superclass

Considers only one program state at a time

Goal: Express behavior of a program, e.g.:

If method setAge is called on an object *o* of type Person and the method argument newAge is positive then afterwards field age has same value as newAge

Requirements for a logic to reason about programs

- can relate different program states, i.e., before and after execution, within a single formula
- program variables are represented by constant symbols that depend on current program state

Dynamic Logic meets the above requirements

Dynamic Logic

(JAVA) Dynamic Logic

Typed FOL

- + programs p
- + modalities $\langle p \rangle \phi$, [p] ϕ (p program, ϕ DL formula)
- ▶ + . . . (later)

An Example

$$i > 5 \rightarrow [i = i + 10;]i > 15$$

Meaning?

If program variable i is greater than 5 in current state, then after executing the JAVA statement "i = i + 10;", i is greater than 15

Dynamic Logic = Typed FOL + ...

$$i > 5 \rightarrow [i = i + 10;]i > 15$$

Program variable i refers to different values before and after execution

- Program variables such as i are state-dependent constant symbols
- Value of state-dependent symbols changeable by a program

Three words one meaning: state-dependent, non-rigid, flexible

Signature of program logic defined as in FOL, but in addition, there are program variables

Rigid versus Flexible

- Rigid symbols, meaning insensitive to program states
 - First-order variables (aka logical variables)
 - Built-in functions and predicates such as 0,1,...,+,*,...,<,...</p>
- Non-rigid (or flexible) symbols, meaning depends on state.
 Capture side effects on state during program execution
 - Program variables are flexible

Any term containing at least one flexible symbol is called flexible

 $\begin{array}{ll} \textbf{Definition (Dynamic Logic Signature)} \\ \Sigma = (P_{\Sigma}, F_{\Sigma}, PV_{\Sigma}, \alpha_{\Sigma}), & F_{\Sigma} \cap PV_{\Sigma} = \emptyset \\ (\text{Rigid) Predicate Symbols} & P_{\Sigma} = \{>, >=, \ldots\} \\ (\text{Rigid) Function Symbols} & F_{\Sigma} = \{+, -, *, 0, 1, \ldots\} \\ \text{Non-rigid Program variables} & \text{e.g. } PV_{\Sigma} = \{\text{i}, \text{j}, \text{ready}, \ldots\} \end{array}$

Standard typing of JAVA symbols: boolean TRUE; <(int,int); ...

Dynamic Logic Signature - KeY input file

```
\sorts {
 // only additional sorts (int, boolean, any predefined)
}
\functions {
 // only additional rigid functions
// (arithmetic functions like +,- etc., predefined)
}
\predicates { /* same as for functions */ }
\programVariables { // non-rigid
   int i, j;
  boolean ready;
}
```

Empty sections can be left out

Again: Two Kinds of Variables

Rigid:

Definition (First-Order/Logical Variables)

Typed logical variables (rigid), declared locally in quantifiers as T x; They may not occur in programs!

Non-rigid:

Program Variables

- Are not FO variables
- Cannot be quantified
- May occur in programs (and formulas)

Dynamic Logic Programs

Dynamic Logic = Typed FOL + programs ... Programs here: any legal sequence of JAVA statements.

Example

```
Signature for FSym<sub>f</sub>: int r; int i; int n;
Signature for FSym<sub>r</sub>: int 0; int +(int,int); int -(int,int);
Signature for PSym<sub>r</sub>: <(int,int);</pre>
```

```
i=0;
r=0;
while (i<n) {
    i=i+1;
    r=r+i;
}
r=r+r-n;
```

Which value does the program compute in r?

```
SEFM: DL 1
```

Relating Program States: Modalities

DL extends FOL with two additional (mix-fix) operators:

- $\langle p \rangle \phi$ (diamond)
- ▶ [*p*] φ (box)

with ${\bf p}$ a program, ϕ another DL formula

Intuitive Meaning

- ▶ (p)φ: p terminates and formula φ holds in final state (total correctness)
- ▶ [p] φ: If p terminates then formula φ holds in final state (partial correctness)

Attention: JAVA programs are deterministic, i.e., if a JAVA program terminates then exactly one state is reached from a given initial state.

Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables. Give the meaning in natural language:

1. $i = old_i \rightarrow \langle i = i + 1; \rangle i > old_i$

If i = i + 1; is executed in a state where i and old_i have the same value, then the program terminates and in its final state the value of i is greater than the value of old_i.

2.
$$i = old_i \rightarrow [while(true)\{i = old_i - 1;\}]i > old_i$$

If the program is executed in a state where i and old_i have the same value and if the program terminates then in its final state the value of i is greater than the value of old_i.

3.
$$\forall x$$
. ($\langle prog_1 \rangle i = x \leftrightarrow \langle prog_2 \rangle i = x$)

 $prog_1$ and $prog_2$ are equivalent concerning termination and the final value of i.

Dynamic Logic: KeY Input File

```
\programVariables { // Declares global program variables
    int i;
    int old_i;
}
```

```
\problem { // The problem to verify is stated here
    i = old_i -> \<{ i = i + 1; }\> i > old_i
}
```

Visibility

- Program variables declared globally can be accessed anywhere
- Program variables declared inside a modality such as "pre $\rightarrow \langle \texttt{int } j; p \rangle post$ " only visible in p

Dynamic Logic Formulas

Definition (Dynamic Logic Formulas (DL Formulas))

- Each FOL formula is a DL formula
- If p is a program and ϕ a DL formula then $\begin{cases} \langle p \rangle \phi \\ [\sigma] \phi \end{cases}$ is a DL formula
- DL formulas closed under FOL quantifiers and connectives

- Program variables are flexible constants: never bound in quantifiers
- Program variables need not be declared or initialized in program
- Programs contain no logical variables
- Modalities can be arbitrarily nested, e.g., $\langle \mathbf{p} \rangle [\mathbf{q}] \phi$

Example (Well-formed? If yes, under which signature?)

▶
$$\forall int y; ((\langle x = 2; \rangle x = y) \leftrightarrow (\langle x = 1; x++; \rangle x = y))$$

Well-formed if FSym_f contains int x;

$$\bullet \exists int x; [x = 1;](x = 1)$$

Not well-formed, because logical variable occurs in program

Dynamic Logic Semantics: States

First-order state can be considered as program state

- Interpretation of (non-rigid) program variables can vary from state to state
- Interpretation of rigid symbols is the same in all states (e.g., built-in functions and predicates)

Program states as first-order states

We identify first-order state $S = (D, \delta, I)$ with program state.

- Interpretation *I* only changes on program variables. ⇒ only record values of variables ∈ PV_Σ
- Set of all states S is called States

Kripke Structure

Definition (Kripke Structure)

Kripke structure or Labelled transition system $K = (States, \rho)$

- States $\mathcal{S} = (\mathcal{D}, \delta, \mathcal{I}) \in States$
- Transition relation ρ : Program \rightarrow (States \rightarrow States)

$$\rho(\mathbf{p})(\mathcal{S}_1) = \mathcal{S}_2$$
 iff.

program p executed in state S_1 terminates and its final state is S_2 , otherwise undefined.

- ρ is the semantics of programs \in *Program*
- ρ(p)(S) can be undefined ('--'):
 p may not terminate when started in S
- Our programs are deterministic (unlike PROMELA):
 ρ(p) is a function (at most one value)

Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)
S ⊨ ⟨p⟩φ iff ρ(p)(S) is defined and ρ(p)(S) ⊨ φ
(p terminates and φ is true in the final state after execution)
s ⊨ [p]φ iff ρ(p)(S) ⊨ φ whenever ρ(p)(S) is defined
(If p terminates then φ is true in the final state after execution)
A DL formula φ is valid iff S ⊨ φ for all states S.

- ▶ Duality: $\langle \mathbf{p} \rangle \phi$ iff $\neg [\mathbf{p}] \neg \phi$ Exercise: justify this with help of semantic definitions
- Implication: if (p)φ then [p]φ Total correctness implies partial correctness
 - converse is false
 - holds only for deterministic programs

More Examples

valid? meaning?

Example

$$\forall \tau \ y$$
; (($\langle p \rangle x = y$) \leftrightarrow ($\langle q \rangle x = y$))

Not valid in general

Programs p and q behave equivalently on variable $\tau \ge \tau$

Example

 $\exists \tau \ y; (\mathbf{x} = \mathbf{y} \rightarrow \langle \mathbf{p} \rangle \mathbf{true})$

Not valid in general

Program p terminates if initial value of x is suitably chosen

Semantics of Programs

In labelled transition system $K = (States, \rho)$: $\rho : Program \rightarrow (States \rightarrow States)$ is semantics of programs $p \in Program$

 ρ defined recursively on programs

Example (Semantics of assignment)

States S interpret program variables v with $\mathcal{I}_{S}(v)$

 $\rho(x=t;)(S) = S'$ where S' identical to S except $\mathcal{I}_{S'}(x) = val_S(t)$

Very advanced task to define ρ for JAVA \Rightarrow Not done in this course Next lecture, we go directly to calculus for program formulas!

- W. Ahrendt, Using KeY Chapter 10 in [KeYbook]
- up-to-date alternative:
 W. Ahrendt, S. Grebing Using the KeY Prover to appear in the new KeY Book (see Google group)
- Dynamic Logic (Sections 3.1, 3.2, 3.4, 3.5, 3.6.1, 3.6.3, 3.6.4), Chapter 3 in [KeYbook]