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Organisational Stuff

Course Home Page

www.cse.chalmers.se/edu/course/TDA293/

Also linked from course portal

Google News Group

I Sign up via course home page (see News)

I Changes, updates, questions, discussions (don’t post solutions)

Passing Criteria

I Written exam 30 October 2015; re-exam 05 January 2016

I Two lab hand-ins

I Exam and labs can be passed separately
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Course Structure

Course Structure

Topic # Lectures # Exercises Lab

Intro 1 8 8

Modeling & Model Checking with
Promela & Spin

6 3 4

Specification & Verification with
JML & KeY

7 3 4

Promela & Spin abstract programs, model checking, automated

JML & KeY concrete Java, deductive verification, semi-automated

. . . more on this later!
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Lectures

Lectures

I Please ask questions during lectures

I Please respond to my questions

I Slides appear online shortly after each lecture
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Exercises

Exercises

I One exercise web page (almost) each week (6 in total)

I Discussed in next exercise class

I Play around with the exercises before coming to the class

I Exercises highly recommended

I Bring laptops if you have
(ideally w. installed tools or browser interface working)
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Labs

Labs

I 2 Lab handins: Promela/Spin 2 Oct, JML/KeY 26 Oct

I 2 Lab FAQ Sessions

I Submission via Fire, linked from course home page

I If submission is returned, roughly one week for correction

I You work in groups of two. No exception!a

You pair up by either:

1. talk to people
2. post to the Google group
3. participate in pairing at first exercise session

In case all that is not sufficient, contact Mauricio by e-mail

aOnly PhD students have to work alone.
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Schedule

see course homepage
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Course Evaluation

1. course evaluation group:
I randomly selected student representatives + teacher
I one meeting during the course, one after

2. web questionnaire after the course
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Course Literature

I The Course Book:

Ben-Ari Mordechai Ben-Ari: Principles of the Spin Model
Checker, Springer, 2008.
Authored by receiver of ACM award for outstanding
contributions to CS education. Recommended by
G. Holzmann. Excellent student text book.
(E-book at link.springer.com)

I further reading:

Holzmann Gerard J. Holzmann: The Spin Model Checker,
Addison Wesley, 2004.

KeYbook B. Beckert, R. Hähnle, and P. Schmitt, editors.
Verification of Object-Oriented Software: The KeY
Approach, vol 4334 of LNCS. Springer, 2006.
Chapters 1 and 10 only. (Download via Chalmers
library → E-books → Lecture Notes in Computer
Science)
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Connection to other Courses

Skills in object-oriented programing (like Java) assumed.

Knowledge corresponding to the following courses can further help:

I Concurrent Programming

I Finite Automata

I Testing, Debugging, and Verification

I Logic in Computer Science

if you took any of those: nice
if not: don’t worry, we introduce everything we use here
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Motivation:
Software Defects cause BIG Failures

Tiny faults in technical systems can have catastrophic consequences

In particular, this goes for software systems

I Ariane 5

I Mars Climate Orbiter

I London Ambulance Dispatch System

I NEDAP Voting Computer Attack
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Motivation:
Software Defects cause OMNIPRESENT Failures

Ubiquitous Computing results in Ubiquitous Failures

Software is almost everywhere:

I Mobiles

I Smart devices

I Smart cards

I Cars

I ...

software/specification quality is a growing commercial and legal issue
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Achieving Reliability in Engineering

Some well-known strategies from civil engineering

I Precise calculations/estimations of forces, stress, etc.

I Hardware redundancy (“make it a bit stronger than necessary”)

I Robust design (single fault not catastrophic)

I Clear separation of subsystems

I Design follows patterns that are proven to work
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Why This Does Not (Quite) Work For Software?

I Software systems compute non-continuous functions.
Single bit-flip may change behaviour completely.

I Redundancy as replication doesn’t help against bugs.
Redundant SW development only viable in extreme cases.

I Insufficient separation of subsystems.
Seemingly correct sub-systems cause global failures.

I Software designs have very high logical complexity.

I Most SW engineers untrained to address correctness.

I Cost efficiency favoured over reliability.

I Design practise for reliable software in immature state
for complex, particularly distributed, systems.
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How to Ensure Software Correctness/Compliance?

A central strategy: testing
(others: SW processes, reviews, libraries, . . . )

Testing against internal SW errors (“bugs”)

I find (hopefully) representative test configurations

I check intentional system behaviour on those

Testing against external faults

I inject faults (memory, communication) by simulation or radiation

I trace fault propagation
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Limitations of Testing

I Testing shows presence of errors, not their absence
(exhaustive testing viable only for trivial systems)

I Representativeness of test cases/injected faults subjective
How to test for the unexpected? Rare cases?

I Testing is labour intensive, hence expensive
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What are Formal Methods

I Rigorous methods used in system design and development

I Mathematics and symbolic logic ⇒ formal

I Increase confidence in a system
I Two aspects:

I System requirements
I System implementation

I Make formal model of both
I Use tools for

I exhaustive search for failing scenario, or
I mechanical proof that implementation satisfies requirements
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What are Formal Methods for

I Complement other analysis and design methods

I Increase confidence in system correctness

I Good at finding bugs
(in code and specification)

I Ensure certain properties of the system (model)

I Should ideally be as automated as possible

and

I Training in Formal Methods increases high quality development skills
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Specification — What a System Should Do

I Simple properties
I Safety properties

Something bad will never happen (eg, mutual exclusion)
I Liveness properties

Something good will happen eventually

I General properties of concurrent/distributed systems

I deadlock-free, no starvation, fairness

I Non-functional properties

I Runtime, memory, usability, . . .

I Full behavioural specification

I Code functionality described by contracts
I Data consistency, system invariants

(in particular for efficient, i.e. redundant, data representations)
I Modularity, encapsulation
I Refinement relation
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The Main Point of Formal Methods is Not

I to show “correctness” of entire systems

I to replace testing entirely

I to replace good design practises

There is no silver bullet!

I No correct system w/o clear requirements & good design

I One can’t formally verify messy code with unclear specs
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But . . .

I Formal proof can replace (infinitely) many test cases

I Formal methods improve the quality of specs
(even without formal verification)

I Formal methods guarantee specific properties of system model
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A Fundamental Fact

Formalisation of system requirements is hard

Let’s see why . . .
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Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

Abstraction
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Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

wrong modeling

e.g., ZZ vs int
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Formalization Helps to Find Bugs in Specs

I Wellformedness and consistency of formal specs partly
machine-checkable

I Declared signature (symbols) helps to spot incomplete specs

I Failed verification of implementation against spec
gives feedback on erroneous formalization

Errors in specifications are at least as common as errors in code,
but their discovery gives deep insights in (mis)conceptions of the system.
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Another Fundamental Fact

Proving properties of systems can be hard
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Level of System (Implementation) Description

I Abstract level
I Finitely many states (bounded size datatypes)
I Automated proofs are (in principle) possible
I Simplification, unfaithful modeling inevitable

I Concrete level
I Unbounded size datatypes

(pointer chains, dynamic arrays, streams)
I Complex datatypes and control structures
I Realistic programming model (e.g., Java)
I Automated proofs hard or impossible!
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Expressiveness of Specification

I Simple
I Simple or general

properties
I Finitely many case

distinctions
I Approximation,

low precision
I Automated proofs are

(in principle) possible

I Complex
I Full behavioural

specification
I Quantification over

infinite domains
I High precision,

tight modeling
I Automated proofs

hard or impossible!
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Main Approaches

Abstract programs, Abstract programs,
Simple properties Complex properties

Concrete programs, Concrete programs,
Simple properties Complex properties

KeY
2nd part
of course

Spin
1st part

of course
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Proof Automation

I “Automated” Proof
(“batch-mode”)

I No interaction (or lemmas) necessary
I Proof may fail or result inconclusive

Tuning of tool parameters necessary
I Formal specification still “by hand”

I “Semi-Automated” Proof
(“interactive”)

I Interaction (or lemmas) may be required
I Need certain knowledge of tool internals

Intermediate inspection can help
I Proof is checked by tool
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Model Checking with Spin

System Model

byte n = 0;

active proctype P() {

...

}

active proctype Q() {

...

}

System Property

[ ] ! (criticalSectP && criticalSectQ)

Model
Checker

48

criticalSectP= 0 1 1
criticalSectQ= 1 0 1
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Model Checking in Industry—Examples

I Hardware verification
I Good match between limitations of technology and application
I Intel, Motorola, AMD, . . .

I Software verification
I Specialized software: control systems, protocols
I Typically no checking of executable source code, but of abstractions
I Bell Labs, Microsoft
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A Major Case Study with Spin

Checking feature interaction for telephone call processing software

I Software for PathStar c© server from Lucent Technologies

I Automated abstraction of unchanged C code into Promela

I Web interface, with Spin as back-end, to:
I determine properties (ca. 20 temporal formulas)
I invoke verification runs
I report error traces

I Finds shortest possible error trace, reported as C execution trace

I Work farmed out to 16 computers, daily, overnight runs

I 18 months, 300 versions of system model, 75 bugs found

I Strength: detection of undesired feature interactions
(difficult with traditional testing)

I Main challenge: defining meaningful properties

SEFM: Introduction /GU 150901 33 / 47



Deductive Verification with KeY

Java Code Formal specification

correct?

Program Verification System

correct4
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Deductive Verification with KeY

Java Code Formal specification

correct?

Program Verification System

correct4

Proof rules establish relation “implementation conforms to specs”

Computer support essential for verification of real programs

synchronized StringBuffer append(char c)

I ca. 15.000 proof steps

I ca. 200 case distinctions

I Two human interactions, ca. 1 minute computing time
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Deductive Verification in Industry—Examples

I Hardware verification
I For complex systems, mostly floating-point processors
I Intel, Motorola, AMD, . . .

I Software verification
I Safety critical systems:

I Paris driver-less metro (Meteor)
I Emergency closing system in North Sea

I Libraries
I Implementations of Protocols
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Major Case Studies with KeY

Java Card 2.2.1 API Reference Implementation

I Reference implementation and full functional specification
I All Java Card 2.2.1 API classes and methods

I 60 classes; ca. 5,000 LoC (250kB) source code
I specification ca. 10,000 LoC

I Conformant to implementation on actual smart cards
I All methods fully verified against their spec

I 293 proofs; 5–85,000 nodes

I Total effort several person months

I Most proofs fully automatic

I Main challenge: getting specs right
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Major Case Studies with KeY: Timsort

Timsort

Hybrid sorting algorithm (insertion sort + merge sort) optimized for
partially sorted arrays (typical for real-world data).

Facts

I Designed by Tim Peters (for Python)

I Since Java 1.7 default algorithm for non-primitive arrays/collections

Timsort is used in

I Java (standard library), used by Oracle

I Python (standard library), used by Google

I Android (standard library), used by Google

I ... and many more languages / frameworks!
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Timsort: People

I Tim Peters

I Sorting Algorithm Designer

I Python Guru

I Stijn de Gouw

I Postman in the NL

I Interested in sorting for
professional reasons

I PhD in Computer Science
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Major Case Studies with KeY

Found Bug in Java Libraries’ main Sorting Method using KeY

I java.util.Collections.sort and java.util.Arrays.sort

implement Timsort

I KeY verification of OpenJDK implementation revield bug.

I Same bug present in Android SDK, Oracle’s JDK, Phyton libary,
Haskell library

Verified Fix using KeY

I Fixing the implementation

I Verified vew version with KeY
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Some researchers found an error in the

logic of merge collapse, explained here,

and with
corrected code shown in

. . .

It should be fixed anyway, and their sug-

gested fix looks good to
me.

Tim
Peters via Python-Bugtra

cker
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Verified Fix using KeY

I Fixing the implementation

I Verified vew version with KeY

Some researchers found an error in the

logic of merge collapse, explained here,

and with
corrected code shown in

. . .

It should be fixed anyway, and their sug-

gested fix looks good to
me.

Tim
Peters via Python-Bugtra

cker

Congratulations to Stijn de Gouw et al.

for finding and fixing a bug in TimSort

using formal methods!Joshua Bloch via Twitter
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Tool Support is Essential

Some Reasons for Using Tools

I Automate repetitive tasks

I Avoid typos, etc.

I Cope with large/complex programs

I Make verification certifiable

Tools sed in this course:

Spin to verify Promela programs against Temporal Logic specs

Spin web interface Developped by Bart van Delft for this course!
jSpin A Java interface for Spin

KeY to verify Java programs against contracts in JML

All are free and run on Windows/Unixes/Mac.
Install first Spin and jSpin on your computer,
or make sure the Spin web interface works.
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Literature for this Lecture

FM in SE B. Beckert, R. Hähnle, T. Hoare, D. Smith, C. Green, S.
Ranise, C. Tinelli, T. Ball, and S. K. Rajamani: Intelligent
Systems and Formal Methods in Software Engineering. IEEE
Intelligent Systems, 21(6):71–81, 2006.
(Access to e-version via Chalmers Library)

KeY R. Hähnle: A New Look at Formal Methods for Software
Construction. In: B. Beckert, R. Hähnle, and P. Schmitt,
editors. Verification of Object-Oriented Software: The KeY
Approach, pp 1–18, vol 4334 of LNCS. Springer, 2006.
(Access to e-version via Chalmers Library)

Spin Gerard J. Holzmann: A Verification Model of a Telephone
Switch. In: The Spin Model Checker, pp 299–324, Chapter
14, Addison Wesley, 2004.
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You will gain experience in ...

I Modelling, and modelling languages

I Specification, and specification languages

I In depth analysis of possible system behaviour

I Typical types of errors

I Reasoning about system (mis)behaviour

I ...
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Learning Outcomes—Knowledge and Understanding

I judge the potential and limitations of using logic based verification
methods for assessing and improving software correctness,

I judge what can and what cannot be expressed by certain
specification/modelling formalisms,

I judge what can and cannot be analysed with certain logics and proof
methods,

I differentiate between syntax, semantics, and proof methods in
connection with logic-based systems for verification
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Learning Outcomes—Skills and Abilities

I express safety properties of (concurrent) programs in a formal way,

I describe the basics of verifying safety properties via model checking,

I use tools which integrate and automate the model checking of
safety properties,

I write formal specifications of object-oriented system units, using the
concepts of method contracts and class invariants,

I describe how the connection between programs and formal
specifications can be represented in a program logic,

I verify functional properties of simple Java programs with a
verification tool,
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Learning Outcomes—Judgement and Approach

I acknowledge the socio-economical costs caused by faulty software,

I judge and communicate the significance of correctness for software
development,

I approach the issue of correctly functioning software by means of
abstraction, modeling, and rigorous reasoning

SEFM: Introduction /GU 150901 45 / 47



Student opinions 2014

Q: What should be preserved for 2015?

Some answers (shortened):

I Exercises

I Lab assignments

I Overall structure

I Not publishing Lab assignments before content appeared in lectures

I Showing this kind of slide

SEFM: Introduction /GU 150901 46 / 47



Student opinions 2014

Q: What should be preserved for 2015?

Some answers (shortened):

I Exercises

I Lab assignments

I Overall structure

I Not publishing Lab assignments before content appeared in lectures

I Showing this kind of slide

SEFM: Introduction /GU 150901 46 / 47



Student opinions 2014

Q: What should be changed for 2015?

Some answers (shortened):

I More opportunities for lab supervision
(avoiding queues at assistants’ offices)

I More links to literature (e.g. Büchi automata)

I Lab 2 deadline not in exam week

I Clarify how long lab grading shall take
(A: Thee working days after the deadline, no after your hand-in)

I Highlight connection to industrial applications
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