
Software Engineering using Formal Methods
Modeling Concurrency

Wolfgang Ahrendt

08 September 2015

SEFM: Spin /GU 150908 1 / 43

Concurrent Systems – The Big Picture

Concurrency: different processes trying not to run into each others’ way

Main problem of concurrency: sharing computational resources

http://www.youtube.com/watch?v=JgMB6nEv7K0

http://www.youtube.com/watch?v=G8eqymwUFi8

Shared resource = crossing, bikers = processes,
and a (data) race in progress, approaching a disaster.

Solutions to this must be carefully designed and verified, otherwise. . .

SEFM: Spin /GU 150908 2 / 43

http://www.youtube.com/watch?v=JgMB6nEv7K0
http://www.youtube.com/watch?v=G8eqymwUFi8

Concurrent Systems – The Big Picture

SEFM: Spin /GU 150908 3 / 43

Focus of this Lecture

Aim of Spin-style model checking methodology:

exhibit design flaws in concurrent and distributed software systems

Focus of this lecture:

I Modeling and analyzing concurrent systems

Focus of next lecture:

I Modeling and analyzing distributed systems

SEFM: Spin /GU 150908 4 / 43

Concurrent/Distributed systems difficult to get right

problems:

I hard to predict, hard to form faithful intuition

I enormous combinatorial explosion of possible behavior

I interleaving prone to unsafe operations

I counter measures prone to deadlocks
I limited control—from within applications—over ‘external’ factors:

I scheduling strategies
I relative speed of components
I performance of communication mediums
I reliability of communication mediums

SEFM: Spin /GU 150908 5 / 43

Testing Concurrent or Distributed System is Hard

We cannot exhaustively test concurrent/distributed systems

I lack of controllability
⇒ we miss failures in test phase

I lack of reproducability
⇒ even if failures appear in test phase,

often impossible to analyze/debug defect

I lack of time
exhaustive testing exhausts the testers long before it exhausts
behavior of the system...

SEFM: Spin /GU 150908 6 / 43

Mission of Spin-style Model Checking

offer an efficient methodology to

I improve the design

I exhibit defects

of concurrent and distributed systems

SEFM: Spin /GU 150908 7 / 43

Activities in Spin-style Model Checking

1. model (critical aspects of) concurrent/distributed system with
Promela

2. state crucial properties with assertions, temporal logic, . . .

3. use Spin to check all possible runs of the model

4. analyze result, possibly re-work 1. and 2.

Seprate concerns of model vs. property! Check the property you want
the model to have, not the one it happens to have.

SEFM: Spin /GU 150908 8 / 43

Main Challenges of Modeling

expressiveness
model must be expressive enough to ‘embrace’ defects the
real system could have

simplicity
model must be simple enough to be ‘model checkable’,
theoretically and practically

SEFM: Spin /GU 150908 9 / 43

Modeling Concurrent Systems in Promela

in the Spin approach,
the cornerstone of modeling concurrent/distributed systems are

Promela processes

SEFM: Spin /GU 150908 10 / 43

Initializing Processes

there is always an initial process prior to all others

often declared implicitly using ‘active’

can be declared explicitly with key word ‘init’

i n i t {

print f ("Hello world\n")
}

if explicit, init is used to start other processes with run statement

SEFM: Spin /GU 150908 11 / 43

Starting Processes

processes can be started explicitly using run

proctype P() {

byte local;

...

}

i n i t {

run P();

run P()

}

each run operator starts copy of process (with copy of local variables)

run P() does not wait for P to finish

(Promela’s run corresponds to Java’s start, not to Java’s run)

SEFM: Spin /GU 150908 12 / 43

Atomic Start of Multiple Processes

by convention, run operators enclosed in atomic block

proctype P() {

byte local;

...

}

i n i t {

atomic {

run P();

run P()

}

}

effect: processes only start executing once all are created

(more on atomic later)

SEFM: Spin /GU 150908 13 / 43

Joining Processes

following trick allows ‘joining’, i.e., waiting for all processes to finish

byte result;

proctype P() {

...

}

i n i t {

atomic {

run P();

run P()

}

(_nr_pr == 1); /* blocks until join*/

print f ("result =%d", result)

}

_nr_pr built-in variable holding number of running processes
_nr_pr == 1 only ‘this’ process (init) is (still) running
SEFM: Spin /GU 150908 14 / 43

Process Parameters

Processes may have formal parameters, instantiated by run:

proctype P(byte id; byte incr) {

...

}

i n i t {

run P(7, 10);

run P(8, 15)

}

SEFM: Spin /GU 150908 15 / 43

Active (Sets of) Processes

init can be made implicit by using the active modifier:

active proctype P() {

...

}

implicit init will run one copy of P

active [n] proctype P() {

...

}

implicit init will run n copies of P

SEFM: Spin /GU 150908 16 / 43

Local and Global Data

Variables declared outside of the processes are global to all processes.

Variables declared inside a process are local to that processes.

byte n;

proctype P(byte id; byte incr) {

byte t;

...

}

n is global
t is local

SEFM: Spin /GU 150908 17 / 43

Modeling with Global Data

pragmatics of modeling with global data:

shared memory of concurrent systems often modeled
by global variables of numeric (or array) type

status of shared resources (printer, traffic light, ...) often modeled
by global variables of Boolean or enumeration type
(bool/mtype).

communication mediums of distributed systems often modeled
by global variables of channel type (chan). (next lecture)

SEFM: Spin /GU 150908 18 / 43

Interference on Global Data

byte n = 0;

active proctype P() {

n = 1;

print f ("Process P, n = %d\n", n)

}

active proctype Q() {

n = 2;

print f ("Process Q, n = %d\n", n)

}

how many outputs possible?

different processes can interfere on global data

SEFM: Spin /GU 150908 19 / 43

Examples

1. interleave0.pml

Spin simulation, SpinSpider automata + transition system

2. interleave1.pml

Spin simulation, adding assertion, fine-grained execution model,
model checking

3. interleave5.pml

Spin simulation, Spin model checking, trail inspection

SEFM: Spin /GU 150908 20 / 43

Atomicity

limit the possibility of sequences being interrupted by other processes

weakly atomic sequence
can only be interrupted if a statement is not executable
defined in Promela by atomic{ . . . }

strongly atomic sequence
cannot be interrupted at all
defined in Promela by d step{ . . . }

SEFM: Spin /GU 150908 21 / 43

Deterministic Sequences

d step:

I strongly atomic

I deterministic (like a single step)

I choices resolved in fixed way (always take the first possible option)
⇒ avoid choices in d step

I it is an error if any statement within d step,
other than the first one (called ‘guard’), blocks

d step {

stmt1; ← guard
stmt2;

stmt3

}

If stmt1 blocks, d step is not entered, and blocks as a whole.

It is an error if stmt2 or stmt3 block.

SEFM: Spin /GU 150908 22 / 43

(Weakly) Atomic Sequences

atomic:

I weakly atomic

I can be non-deterministic

atomic {

stmt1; ← guard
stmt2;

stmt3

}

If guard blocks, atomic is not entered, and blocks as a whole.

Once atomic is entered, control is kept until a statement blocks, and
only then passed to another process.

SEFM: Spin /GU 150908 23 / 43

Prohibit Interference by Atomicity

apply atomic or d step to interference examples

SEFM: Spin /GU 150908 24 / 43

Synchronization on Global Data

Promela has no synchronization primitives,
like semaphores, locks, or monitors.

Instead, Promela inhibits concept of statement executability

Executability addresses many issues in the interplay of processes

Most known synchronization primitives (e.g. test & set, compare & swap,
semaphores) can be modelled using executability and atomicity

SEFM: Spin /GU 150908 25 / 43

Executability

Each statement has the notion of executability.
Executability of basic statements:

statement type executable

assignment always

assertion always

print statement always

expression statement iff value not 0/false

send/receive statement (next lecture)

SEFM: Spin /GU 150908 26 / 43

Executability (Cont’d)

Executability of compound statements:

atomic resp. d step statement is executable
iff

guard (i.e., the first inner statement) is executable

if resp. do statement is executable
iff

any of its alternatives is executable

an alternative is executable
iff

its guard (the first statement) is executable

(recall: in alternatives, “->” syntactic sugar for “;”)

SEFM: Spin /GU 150908 27 / 43

Executability and Blocking

Definition (Blocking)

A statement blocks iff it is not executable.
A process blocks iff its location counter points to a blocking statement.

For each step of execution, the scheduler nondeterministically chooses a
process to execute among the non-blocking processes.

Executability, resp. blocking are the key to Promela-style modeling of
solutions to synchronization problems.
(to be discussed in the following)

SEFM: Spin /GU 150908 28 / 43

The Critical Section Problem

archetypical problem of concurrent systems

given a number of looping processes, each containing a critical section

design an algorithm such that:

Mutual Exclusion At most one process is executing its critical section
at any time.

Absence of Deadlock If some processes are trying to enter their critical
sections, then one of them must eventually succeed.

Absence of (individual) Starvation If any process tries to enter its
critical section, then that process must eventually succeed.

SEFM: Spin /GU 150908 29 / 43

Critical Section Pattern

for demonstration and simplicity:
(non)critical sections only printf statements

active proctype P() {

do :: print f ("P non -critical actions\n");
/* begin critical section */

print f ("P uses shared recourses\n")
/* end critical section */

od
}

active proctype Q() {

do :: print f ("Q non -critical actions\n");
/* begin critical section */

print f ("Q uses shared recourses\n")
/* end critical section */

od
}

SEFM: Spin /GU 150908 30 / 43

No Mutual Exclusion Yet

More infrastructure to achieve ME.
Adding two Boolean flags:

bool P_in_CS = f a l s e ;
bool Q_in_CS = f a l s e ;

active proctype P() {

do :: print f ("P non -critical actions\n");
P_in_CS = true;
/* begin critical section */

print f ("P uses shared recourses\n");
/* end critical section */

P_in_CS = f a l s e
od

}

active proctype Q() {

...correspondingly...
}

SEFM: Spin /GU 150908 31 / 43

Show Mutual Exclusion VIOLATION with Spin

adding assertions

bool P_in_CS = f a l s e ;
bool Q_in_CS = f a l s e ;

active proctype P() {

do :: print f ("P non -critical actions\n");
P_in_CS = true;
/* begin critical section */

print f ("P uses shared recourses\n");
assert (! Q_in_CS);
/* end critical section */

P_in_CS = f a l s e
od

}

active proctype Q() {

........assert (! P_in_CS);........
}

SEFM: Spin /GU 150908 32 / 43

Mutual Exclusion by Busy Waiting

bool P_in_CS = f a l s e ;
bool Q_in_CS = f a l s e ;

active proctype P() {

do :: print f ("P non -critical actions\n");
P_in_CS = true;
do :: !Q_in_CS -> break

:: e l se -> skip
od;
/* begin critical section */

print f ("P uses shared recourses\n");
assert (! Q_in_CS);
/* end critical section */

P_in_CS = f a l s e
od

}

active proctype Q() { ...correspondingly... }

SEFM: Spin /GU 150908 33 / 43

Mutual Exclusion by Blocking

instead of Busy Waiting, process should

I yield control

I continuing to run only when exclusion properties are fulfilled

We can use expression statement !Q_in_CS,
to let process P block where it should not proceed!

SEFM: Spin /GU 150908 34 / 43

Mutual Exclusion by Blocking

active proctype P() {

do :: print f ("P non -critical actions\n");
P_in_CS = true;
!Q in CS;

/* begin critical section */

print f ("P uses shared recourses\n");
assert (! Q_in_CS);
/* end critical section */

P_in_CS = f a l s e
od

}

active proctype Q() {

...correspondingly...
}

SEFM: Spin /GU 150908 35 / 43

Verify Mutual Exclusion of this

Verify with Spin

Spin error (invalid end state)
⇒ deadlock

can make pan ignore the deadlock: ./pan -E

Spin still reports assertion violation(!)

SEFM: Spin /GU 150908 36 / 43

Proving Mutual Exclusion

I mutual exclusion (ME) cannot be shown by Spin

I P/Q in CS sufficient for achieving ME

I P/Q in CS not sufficient for proving ME

need more infrastructure:
ghost variables, only for proving / model checking

SEFM: Spin /GU 150908 37 / 43

Show Mutual Exclusion with Ghost Variable

int critical = 0;

active proctype P() {

do :: print f ("P non -critical actions\n");
P_in_CS = true;
!Q_in_CS;

/* begin critical section */

critical++;

print f ("P uses shared recourses\n");
assert (critical < 2);

critical--;

/* end critical section */

P_in_CS = f a l s e
od

}

active proctype Q() {

...correspondingly...
}
SEFM: Spin /GU 150908 38 / 43

Verify Mutual Exclusion of this

Spin (./pan -E) shows no assertion is violated
⇒ mutual exclusion is verified

Still Spin (without -E) reports (invalid end state)
⇒ deadlock

SEFM: Spin /GU 150908 39 / 43

Deadlock Hunting

Invalid End State:

I A process does not finish at its end

I OK if it is not crucial to continue – see end.pml

I If it is crucial to continue:
Real deadlock

Find Deadlock with Spin:

I Verify to produce a failing run trail

I Simulate to see how the processes get to the interlock

I Fix the code (not using the end...: labels or -E option)

SEFM: Spin /GU 150908 40 / 43

Atomicity against Deadlocks

solution:

checking and setting the flag in one atomic step

(demonstrae that in csGhost.pml)

atomic {

!Q_in_CS;

P_in_CS = true
}

SEFM: Spin /GU 150908 41 / 43

Variations of Critical Section Problem

I designated artifacts for verification:
I ghost variables (‘verification only’ variables)
I temporal logic (later in the course)

I max n processes allowed in critical section
modeling possibilities include:

I counters instead of booleans
I semaphores (see demo)

I more fine grained exclusion conditions, e.g.

I several critical sections (Leidestraat in Amsterdam)
I writers exclude each other and readers

readers exclude writers, but not other readers
I FIFO queue semaphores, for fairly choosing processes to enter

I ... and many more

SEFM: Spin /GU 150908 42 / 43

Why Not Critical Section in Single Atomic Block?

Actually possible in this case.
Also in interleaving example (counting via temp, see above).
But:

I does not carry over to variations (see previous slide)

I atomic only weakly atomic!

I d step excludes any nondeterminism!

Using atomic and d step too heavily, for too large blocks, can result in
well-behaved models, while modelling the wrong system.

SEFM: Spin /GU 150908 43 / 43

	This Lecture
	Concurrent Processes in Promela
	Interference on Global Data
	Atomicity
	Synchronization on Global Data
	The Critical Section Problem
	Mutual Exclusion
	Absence of Deadlock
	Variations
	atomic + d_step enough?

