
Compiler Construction Project

Josef Svenningsson

Spring 2015 – v1.2

Contents

1 Change Log 3

1.1 v1.0 – March 20 . 3

1.2 v1.1 – March 27 . 3

1.3 v1.2 – April 15 . 3

2 Project summary 3

2.1 Submission deadlines . 3

2.2 Extensions, credits and grades . 4

3 The language Javalette 5

3.1 Some small Javalette programs 5

3.2 Program structure . 6

3.3 Types . 7

3.4 Statements . 7

3.5 Expressions . 8

3.6 Lexical details . 9

3.7 Primitive functions . 9

3.8 Parameter passing . 9

3.9 Javalette, C, and Java . 10

4 The front end 10

1

5 Extensions 11

5.1 One-dimensional arrays and for loops 11

5.2 Multidimensional arrays . 13

5.3 Dynamic data structures . 13

5.4 Object-orientation . 15

5.5 Object orientation with dynamic dispatch 18

5.6 Native x86 code generation. 18

5.7 Study of LLVM optimization . 18

5.8 Further possibilities . 19

6 Testing the project 19

6.1 Automated testing . 20

7 Code generation: LLVM 20

7.1 LLVM code . 20

7.2 The structure of a LLVM file . 21

7.3 An example . 21

7.4 LLVM tools . 23

7.5 Optimizations . 24

8 Hints for the extensions 26

8.1 One-dimensional arrays . 26

8.2 Multidimensional arrays . 26

8.3 Structures and object-orientation. 26

8.4 Native code generation . 27

9 Collaboration and academic honesty 27

A Submission format 29

B The tester 30

B.1 Installation . 30

B.2 Running the tests . 31

B.3 Testing your submission . 32

2

1 Change Log

1.1 v1.0 – March 20

Initial version

1.2 v1.1 – March 27

• A step-by-step buide on how to produce an executable file.
• Remove the use of llvm-ld in favour of llvm-link.
• Appendix B rewritten to describe the new grading script.

1.3 v1.2 – April 15

• Some corrections and clarifications on how to use the test script

2 Project summary

This document describes the compiler project that you will do as the main part
of the examination for the Compiler construction course. The project is done
individually or in groups of two students (recommended). The project is split
into three parts:

1. Front end for the language Javalette, i.e. lexical analysis, parsing, building
abstract syntax, type-checking and a few static checks. This part builds
mainly on knowledge that you should have acquired previously, e.g. in the
course Programming Language Technology.

2. A back end that generates code for LLVM (the Low Level Virtual Machine).
LLVM are described in more detail later in this document.

3. Extensions to the base language. There are several optional extensions
that you may choose to do for the third part of the project, as detailed
below.

2.1 Submission deadlines

There are three submission deadlines, one for each part of the project:

• Submission A: Sunday, April 19 at 23.59. At this point you must submit
parts 1, i.e. a working compiler that can parse and typecheck all programs
in the base language and statically receject illegal program

3

• Submission B: Sunday, May 10 at 23.59. Part 2, i.e. a complete compiler
that can compile and run all programs in the base language.

• Submission C: Sunday, May 24 at 23.59. Part 3. At least one extension to
the base language is required to pass the course. More extensions can be
implemented to get a higher grade. More information below.

In addition to these two submissions, examination includes a brief oral exam
after submission C. Exact dates will be posted on the course home page.

2.2 Extensions, credits and grades

The options for an extended project are to extend the source language with
e.g. arrays and for loops, structures and pointers, object-oriented features or
to generate native x86 code. There is also one essay project you can do which
involves studying optimizations in the LLVM framework. You do not need to
decide in advance how ambitious you will be; instead you should finish each
stage before you attempt an extension.

In submission C, each of the seven tasks described in sections 5.1–5.7 gives one
credit if implemented as described.

To pass the course and get grade 3 (or G, if you are a GU student), you need to
submit working solutions in all submissions, implement at least one language
extension in submission C, and pass the oral exam. To get grade 4, you must
earn three credits; grade 5 (VG for GU students) requires five credits.

If you are only looking to pass the course and only get one credit then the project
of studying an LLVM optimization, described in section 5.7 is not enough. You
must implement at least one language extension to Javalette in order to pass
the course.

Part of the goal of a project course like this is that you shall deliver working
code on time. Thus, credits will be awarded for working extensions submitted
before the deadline. We may allow resubmissions for minor bugfixes, but no
partial credits will be awarded for partial solutions.

Finally, we note that we are making major simplifications in a compiler project
by using virtual machines like LLVM as targets, rather than a real machine.
This means that you can produce simple-minded code and rely on the respective
target tools to do optimization and JIT compilation to machine code. The final
lectures in the course will discuss these issues, but they will not be covered in
depth. On the other hand, for most compiling purposes the road we take is the
most effective. This leaves fine-tuning of optimization to LLVM tools, allowing
many source languages and front-ends to profit from this effort.

4

3 The language Javalette

Javalette is a simple imperative language. It is almost a subset of C (see below).
It can also be easily translated to Java (see below).

Javalette is not a realistic language for production use. However, it is big enough
to allow for a core compiler project that illustrates all phases in compilation. It
also forms a basis for extensions in several directions.

The basic language has no heap-allocated data. However, the extensions involve
(Java-like) arrays, structures and objects, all of which are allocated on the heap.
The extended language is designed to be garbage-collected, but you will not
implement garbage collection as part of your project.

The description in this document is intentionally a bit vague and based on
examples; it is part of your task to define the language precisely. However, the
language is also partly defined by a collection of test programs (see below), on
which the behaviour of your compiler is specified.

3.1 Some small Javalette programs

Let’s start with a couple of small programs. First, here is how to say hello to
the world:

// Hello world program

int main () {
printString("Hello world!") ;
return 0 ;

}

A program that prints the even numbers smaller than 10 is

int main () {
int i = 0 ;
while (i < 10) {

if (i % 2 == 0) printInt(i) ;
i++ ;

}
return 0 ;

}

Finally, we show the factorial function in both iterative and recursive style:

5

int main () {
printInt(fact(7)) ;
printInt(factr(7)) ;
return 0 ;

}

// iterative factorial

int fact (int n) {
int i,r ;
i = 1 ;
r = 1 ;
while (i <= n) {

r = r * i ;
i++ ;

}
return r ;

}

// recursive factorial

int factr (int n) {
if (n < 2)

return 1 ;
else

return n * factr(n-1) ;
}

3.2 Program structure

A Javalette program is a sequence of function definitions.

A function definition has a return type, a name, a parameter list, and a body
consisting of a block.

The names of the functions defined in a program must be different (i.e, there is
no overloading).

One function must have the name main. Its return type must be int and its
parameter list empty. Execution of a program consists of executing ‘main.

A function whose return type is not void must return a value of its return type.
The compiler must check that it is not possible that execution of the function
terminates without passing a return statement. This check may be conservative,
i.e. reject as incorrect certain functions that actually would always return a
value. A typical case could be to reject a function ending with an if-statement
where only one branch returns, without considering the possibility that the test

6

expression might always evaluate to the same value, avoiding the branch without
return. However, your check must correctly decide the control flow when the
test expression is the literal true or the literal false. A function, whose return
type is void, may, on the other hand, omit the return statement completely.

Functions can be mutually recursive, i.e. call each other. There is no prescribed
order between function definitions (i.e., a call to a function may appear in the
program before the function definition).

There are no modules or other separate compilation facilities; we consider only
one-file programs.

3.3 Types

Basic Javalette types are int, double, boolean and void. Values of types int,
double and boolean are denoted by literals (see below). void has no values
and no literals.

No coercions (casts) are performed between types. Note this: it is NOT consid-
ered an improvement to your compiler to add implicit casts. In fact, some of the
test programs check that you do not allow casts.

In the type checker, it is useful to have a notion of a function type, which is a
pair consisting of the value type and the list of parameter types.

3.4 Statements

The following are the forms of statements in Javalette; we indicate syntax using
BNFC notation, where we use Ident, Exp and Stmt to indicate a variable,
expression and statement, respectively. Terminals are given within quotes. For
simplicity, we sometimes deviate here from the actual provided grammar file.

• Empty statement: ";"

• Variable declarations: Type Ident ";"

Comment: Several variables may be declared simultaneously, as in int i,
j; and initial values may be specified, as in int n = 0;

• Assignments: Ident "=" Exp ";"

• Increments and decrements: Ident "++" ";" and Ident "--" ";"

Comment: Only for variables of type int; can be seen as sugar for assign-
ments.

• Conditionals: "if" "(" Exp ")" Stmt "else" Stmt

Comment: Can be without the else part.

7

• While loops : "while" "(" Exp ")" Stmt

• Returns: "return" Exp ";"

Comment: No Exp for type void.

• Expressions of type void: Exp ";"

Comment: The expression here will be a call to a void function (no other
expressions have type void).

• Blocks: "{" [Stmt] "}"

Comment: A function body is a statement of this form.

Declarations may appear anywhere within a block, but a variable must be
declared before it is used.
A variable declared in an outer scope may be redeclared in a block; the new
declaration then shadows the previous declaration for the rest of the block.
A variable can only be declared once in a block.
If no initial value is given in a variable declaration, the value of the variable is
initialized to 0 for type int, 0.0 for type double and false for type boolean.
Note that this is different from Java, where local variables must be explicitly
initialized.

3.5 Expressions

Expressions in Javalette have the following forms:

• Literals: Integer, double, and Boolean literals (see below).

• Variables.

• Binary operators: +, -, *, / and %. Types are as expected; all except % are
overloaded. Precedence and associativity as in C and Java.

• Relational expressions: ==, !=, <, <=, > and >=. All overloaded as expected.

• Disjunctions and conjunctions: || and &&. These operators have lazy
semantics, i.e.,

– In a && b, if a evaluates to false, b is not evaluated and the value
of the whole expression is false.

– In a || b, if a evaluates to true, b is not evaluated and the value of
the whole expression is true.

• Unary operators: - and ! (negation of int and double, negation of
boolean).

• Function calls.

8

3.6 Lexical details

Some of the tokens in Javalette are

• Integer literals: sequence of digits, e.g. 123.
• Float (double) literals: digits with a decimal point, e.g. 3.14, possibly

with an exponent (positive or negative), e.g. 1.6e-48.
• Boolean literals: true and false.
• String literals: ASCII characters in double quotes, e.g. "Hello world"

(escapes as usual: \n \t \" \\). Can only be used in calls of primitive
function printString.

• Identifiers: a letter followed by an optional sequence of letters, digits, and
underscores.

• Reserved words: These include while, if, else and return.

Comments in Javalette are enclosed between /* and */ or extend from // to
the end of line, or from # to the end of line (to treat C preprocessor directives
as comments).

3.7 Primitive functions

For input and output, Javalette programs may use the following functions:

void printInt (int n)
void printDouble(double x)
void printString(String s)
int readInt()
double readDouble()

Note that there is no type of strings in Javalette, so the only argument that can
be given to printString is a string literal.
The print functions print their arguments terminated by newline and the read
functions will only read one number per line. This is obviously rudimentary, but
enough for our purposes.
These functions are not directly implemented in the virtual machines we use.
We will provide them using other means, as detailed below.

3.8 Parameter passing

All parameters are passed by value, i.e. the value of the actual parameter is
computed and copied into the formal parameter before the subroutine is executed.
Parameters act as local variables within the subroutine, i.e. they can be assigned
to.

9

3.9 Javalette, C, and Java

Javalette programs can be compiled by a C compiler (gcc) if prefixed by suitable
preprocessor directives and macro definitions, e.g.

#include <stdio.h>
#define printInt(k) printf("%d\n", k)
#define boolean int
#define true 1

In addition, function definitions must be reordered so that definition precedes
use, mutual recursion must be resolved by extra type signatures and variable
declarations moved to the beginnings of blocks.

Javalette programs can be compiled by a Java compiler (javac) by wrapping
all functions in a class as public static methods and adding one more main
method that calls your main:

public static void main (String [] args) {
main();

}

Using a C compiler or Java compiler is a good way to understand what a program
means even before you have written the full compiler. It can be useful to test
the programs produced by your compiler with the result of the C- and/or Java
compiler.

4 The front end

Your first task is to implement a compiler front end for Javalette, i.e.

1. Define suitable data types/classes for representing Javalette abstract syn-
tax.

2. Implement a lexer and parser that builds abstract syntax from strings.

3. Implement a type checker that checks that programs are type-correct.

4. Implement a main program that calls lexer, parser and type checker, and
reports errors.

These tasks are very well understood; there is a well-developed theory and, for
steps 1 and 2, convenient tools exist that do most of the work. You should be

10

familiar with these theories and tools and we expect you to complete the front
end during the first week of the course.

We recommend that you use the BNF converter and either Alex and Happy (if
you decide to implement your compiler in Haskell) or JLex and Cup (if you use
Java). We may also allow other implementation languages and tools, but we can
not guarantee support, and you must discuss your choice with Josef before you
start. This is to make sure that we will be able to run your compiler and that
you will not use inferior tools.

We provide a BNFC source file Javalette.cf that you may use. If you already
have a BNFC file for a similar language that you want to reuse you may do so,
but you must make sure that you modify it to pass the test suite for this course.

We will accept a small number of shift/reduce conflicts in your parser; your docu-
mentation must describe these and argue that they are harmless. Reduce/reduce
conflicts are not allowed. The provided BNFC file has the standard dangling-else
shift/reduce conflict.

One thing to note is that it may be useful to implement the type-checker as
a function, which traverses the syntax and returns its input if the program is
type-correct. The reason for this is that you may actually want to modify this
and decorate the syntax trees with more information during type-checking for
later use by the code generator. One example of such decoration can be to
annotate all subexpressions with type information; this will be useful during
code generation.

To do this, you can add one further form of expression to your BNFC source,
namely a type-annotated expression.

5 Extensions

This section describes optional extensions that you may implement to learn more,
get credits and thus a higher final grade. You may choose different combinations
of the extensions.

In this section we specify the requirements on the extensions. Some implementa-
tion hints are given in section 8 and in the lecture notes.

5.1 One-dimensional arrays and for loops

The basic Javalette language has no heap-allocated data, so memory management
consists only of managing the run-time stack. In this extension you will add
one-dimensional arrays to basic Javalette. To get the credit, you must implement
this in the front end and in the respective back end.

11

Arrays are Java-like, i.e. variables of array type contain a reference to the actual
array, which is allocated on the heap. Arrays are explicitly created using a
new construct and variables of array type have an attribute, length, which is
accessed using dot notation.

Some examples of array declarations in the extension are

int[] a ;
double[] b;

Creating an array may or may not be combined with the declaration:

a = new int[20];
int[] c = new int[30];

After the above code, a.length evaluates to 20 and a refers to an array of 20
integer values, indexed from 0 to 19 (indexing always starts at 0).

Functions may have arrays as arguments and return arrays as results:

int[] sum (int[] a, int[] b) {
int[] res = new int [a.length];
int i = 0;
while (i < a.length) {

res[i] = a[i] + b[i];
i++;

}
return res;

}

Array parameters are passed by value, i.e. the reference is copied into the
parameter.

One new form of expressions is added, namely indexing, as shown in the exam-
ple. Indexed expressions may also occur as L-values, i.e. as left hand sides of
assignment statements. An array can be filled with values by assigning each
individual element, as in function sum. But one can also assign references as in
C or Java:

c = a;

The extension also includes implementation of a simple form of foreach-loop to
iterate over arrays. If expr is an expression of type t[], the following is a new
form of statement:

12

for (t var : expr) stmt

The variable var of type t assumes the values expr [0], expr [1] and so on and the
stmt is executed for each value. The scope of var is just stmt.

This form of loop is very convenient when you want to iterate over an array and
access the elements, but it is not useful when you need to assign values to the
elements. For this, we still have to rely on the while loop. The traditional for
loop would be attractive here, but we cannot implement everything.

Test files for this extension are in subdirectory extensions/arrays1.

5.2 Multidimensional arrays

In this extension you add arrays with an arbitrary number of indices. Just as in
Java, an array of type int[][] is a one-dimensional array, each of whose elements
is a one-dimensional array of integers. Declaration, creation and indexing is as
expected:

int[][] matrix = new int[10][20];
int[][][] pixels;
...
matrix[i][j] = 2 * matrix[i][j];

You must specify the number of elements in each dimension when creating an
array. For a two-dimensional rectangular array such as matrix, the number
of elements in the two dimensions are matrix.length and matrix[0].length,
respectively.

5.3 Dynamic data structures

In this extension you will implement a simple form of dynamic data structures,
which is enough to implement lists and trees. The source language extensions
are the following:

• Two new forms of top-level definitions are added (in the basic language
there are only function definitions):

1. Structure definitions, as examplified by

struct Node {
int elem;
list next;

};

2. Pointer type definitions, as examplified by

13

typedef struct Node *list;

Note that this second form is intended to be very restricted. We
can only use it to introduce new types that represent pointers to
structures. Thus this form of definition is completely fixed except
for the names of the structure and the new type. Note also that,
following the spirit of Javalette, the order of definitions is arbitrary.

• Three new forms of expression are introduced:

1. Heap object creation, examplified by new Node, where new is a new
reserved word. A new block of heap memory is allocated and the ex-
pression returns a pointer to that memory. The type of this expression
is thus the type of pointers to Node, i.e. list.

2. Pointer dereferencing, examplified by xs->next. This returns the
content of the field next of the heap node pointed to by xs.

3. Null pointers, examplified by (list)null. Note that the pointer
type must be explicitly mentioned here, using syntax similar to casts
(remember that there are no casts in Javalette).

• Finally, pointer dereferencing may also be used as L-values and thus occur
to the left of an assignment statement, as in

xs->elem = 3;

Here is an example of a complete program in the extended language:

typedef struct Node *list;

struct Node {
int elem;
list next;

};

int main() {
printInt(length(fromTo(1,100)));
return 0;

}

list cons (int x, list xs) {
list n;
n = new Node;
n->elem = x;
n->next = xs;
return n;

14

}

list fromTo (int m, int n) {
if (m>n)

return (list)null;
else

return cons (m,fromTo (m+1,n));
}

int length (list xs) {
int res = 0;
while (xs != (list)null) {

res++;
xs = xs->next;

}
return res;

}

This and a few other test programs can be found in the extensions/pointers
subdirectory of the test suite.

5.4 Object-orientation

This extension adds classes and objects to basic Javalette. From a language
design point of view, it is not clear that you would want both this and the
previous extension in the same language, but here we disregard this.

Here is a first simple program in the proposed extension:

class Counter {
int val;

void incr () {val++; return;}
int value () {return val;}

}

int main () {
Counter c;
c = new Counter;
c.incr();
c.incr();
c.incr();
int x = c.value();
printInt(x);

15

return 0;
}

We define a class Counter, and in main create an object and call its methods a
couple of times. The program writes 3 to stdout.

The source language extensions, from basic Javalette, are

• A new form of top-level definition: a class declaration. A class has a
number of instance variables and a number of methods.
Instance variables are private, i.e. are only visible within the methods of
the class. We could not have written c.val in main.
All methods are public; there is no way to define private methods. It would
not be difficult in principle to allow this, but we must limit the task.
There is always only one implicit constructor method in a class, with no
arguments. Instance variables are, as all variables in Javalette, initialized
to default values: numbers to 0, booleans to false and object references to
null.
We support a simple form of single inheritance: a class may extend another
one:

class Point2 {
int x;
int y;

void move (int dx, int dy) {
x = x + dx;
y = y + dy;

}

int getX () { return x; }

int getY () { return y; }
}

class Point3 extends Point2 {
int z;

void moveZ (int dz) {
z = z + dz;

}

int getZ () { return z; }

}

16

int main () {
Point2 p;

Point3 q = new Point3;

q.move(2,4);
q.moveZ(7);
p = q;

p.move(3,5);

printInt(p.getX());
printInt(p.getY());
printInt(q.getZ());

return 0;
}

Here Point3 is a subclass of Point2. The program above prints 5, 9 and
7.
Classes are types; we can declare variables to be (references to) objects of
a certain class. Note that we have subtyping: we can do the assignment p
= q; . The reverse assignment, q = p; would be a type error. We have a
strong restriction, though: we will not allow overriding of methods. Thus
there is no need for dynamic dispatch; all method calls can be statically
determined.

• There are four new forms of expression:

1. "new" Ident creates a new object, with fields initialized as described
above.

2. Expr "." Expr, is a method call; the first expression must evaluate
to an object reference and the second to a call of a method of that
object.

3. "(" Ident ") null" is the null reference of the indicated class/type.
4. "self" is, within the methods of a class, a reference to the current

object. All calls to other, sibling methods of the class must be
indicated as such using self, as in self.isEmpty() from one of the
test files. This requirement is natural, since the extended Javalette,
in contrast to Java, has free functions that are not methods of any
class.

17

5.5 Object orientation with dynamic dispatch

The restriction not to allow method override is of course severe. In this extension
the restriction is removed and subclassing with inheritance and method override
implemented. This requires a major change of implementation as compared to
the previous extension. It is no longer possible to decide statically which code to
run when a message is sent to an object. Thus each object at runtime must have
a link to a class descriptor, a struct with pointers to the code of the methods
of the class. These class descriptor are linked together in a list, where a class
descriptor has a link to the descriptor of its superclass. This list is searched at
runtime for the proper method to execute. All this is discussed more during the
lectures.

5.6 Native x86 code generation.

This extension is to produce native assembler code for a real machine, preferrably
x86. We may accept code generators for other architectures, but you need to
think of how we can test your extension. Before you attempt to write a backend
for another architecture, discuss your choice with Josef and explain the testing
procedure.

5.7 Study of LLVM optimization

We offer one possibility to get a credit that does not involve implementing a
Javalette extension. This is to do a more thorough study of the LLVM framework
and write a report of 4-5 pages. More precisely the task is as follows:
Look at the list of available optimization passes and choose at least three of
these for further study. Mail Josef to agree that your choice is suitable (do this
before you start to work on the extension!).
For each pass you must:

• Describe the optimization briefly; what kind of analysis is involved, how is
code transformed?

• Find a Javalette program that is suitable to illustrate the optimization.
List the program, the LLVM code generated by your compiler and the
LLVM code that results by using opt to apply this pass (and only this
pass). In addition to the code listing, explain how the general description
in the previous item will actually give the indicated result. Part of the
task is to find a program where the pass has an interesting effect.

We emphasize again that if you are only looking to pass the course and only get
one credit then this project is not enough. You have to implement at least one
extension to Javalette in order to pass the course.

18

5.8 Further possibilities

We are willing to give credits also to other extensions, which are not as well
defined. If you want to do one of these and get credit, you must discuss it with
Josef in advance. Here are some possibilities:

• Allow functions to be statically nested.
• Implement higher order functions, using either closures or defunctionaliza-

tion.
• A simple module system. Details on module systems will be provided in

the lectures.
• Implement exceptions, which can be thrown and caught.
• Implement some form of garbage collection.
• Provide a predefined type of lists with list comprehensions, similar to what

is available in Python.
• Implement a backend for another architecture, such as ARM. It is important

that you provide some way for the grader to test programs.

6 Testing the project

Needless to say, you should test your project extensively. We provide a testsuite
of programs and will run your compiler on these. You may download the testsuite
from the course web site. The testsuite contains both correct programs (in subdi-
rectory testsuite/good) and illegal programs (in subdirectory testsuite/bad).
For the good programs the correct output is provided in files with suffix .output.
The bad programs contain examples of both lexical, syntactical and type errors.
Already after having produced the parser you should therefore write a main
program and try to parse all the test programs. The same holds for the type
checker and so on. When you only have the parser, you will of course pass some
bad programs; those that are syntactically correct but have type errors.
Summarizing, your compiler must

• accept and be able to compile all of the files testsuite/good/*.jl. For
these files, the compiler must print a line containing only OK to standard
error, optionally followed by arbitrary output, such as a syntax tree or
other messages. The compiler must then exit with the exit code 0.

• reject all of the files in testsuite/bad/*.jl. For these files, the compiler
must print ERROR as the first line to standard error and then give an
informative error message. The compiler must then exit with an exit code
other than 0.

Furthermore, for correct programs, your compiled programs, must run and give
correct output.

19

6.1 Automated testing

We also provide a program that automatically compiles and runs all the test
programs. Before submission you must run that program to verify that your
compiler behaves correctly. Our first action when we receive your submission is
to run these tests. If this run fails, we will reject your submission without further
checks, so you must make sure that this step works. See appendix B for details.
Unfortunately, we cannot supply a working test driver for the Windows platform.
If you have a Windows machine, you may do most of the development, including
manual testing, on that machine, but for final testing you should transfer your
project to our lab machines and run the test driver.

The test driver runs each good program and compares its output with the
corresponding .output file. If the program needs input, this is taken from the
.input file. Note that the test driver handles this; your generated code should
read from stdin and write to stdout.

The tests are of course not exhaustive. It is quite possible that the grader will
discover bugs in your code even if it passes all tests.

7 Code generation: LLVM

In the second part of the course you will change your target to LLVM, redo the
back end and optionally extend the Javalette language.

LLVM (Low Level Virtual Machine) is both an intermediate representation
language and a compiler infrastructure, i.e. a collection of software components for
manipulating (e.g. optimizing) LLVM code and backends for various architectures.
LLVM has a large user base and is actively developed. A lot of information and
code to download can be found at the LLVM web site http://www.llvm.org.

Also LLVM code comes in two formats, a human-readable assembler format
(stored in .ll files) and a binary bitcode format (stored in.bc files). Your
compiler will produce the assembler format and you will use the LLVM assembler
llvm-as to produce binary files for execution.

In addition to the assembler, the LLVM infrastructure consists of a large number
of tools for optimizing, linking, JIT-compiling and manipulating bitcode. One
consequence is that a compiler writer may produce very simple-minded LLVM
code and leave to the LLVM tools to improve code when needed. Of course,
similar remarks apply to JVM code.

7.1 LLVM code

The LLVM virtual machine is a register machine, with an infinite supply of typed,
virtual registers. The LLVM intermediate language is a version of three-address

20

code with arithmetic instructions that take operands from two registers and
place the result in a third register. LLVM code must be in SSA (static single
assignment) form, i.e. each virtual register may only be assigned once in the
program text.

The LLVM language is typed, and all instructions contain type information.
This “high-level” information, together with the “low-level” nature of the virtual
machine, gives LLVM a distinctive flavour.

The LLVM web site provides a wealth of information, including language refer-
ences, tutorials, tool manuals etc. There will also be lectures focusing on code
generation for LLVM.

7.2 The structure of a LLVM file

There is less overhead in the LLVM file. But, since the language is typed, we
must inform the tools of the types of the primitive functions:

declare void @printInt(i32)
declare void @printDouble(double)
declare void @printString(i8*)
declare i32 @readInt()
declare double @readDouble()

Here i32 is the type of 32 bit integers and i8* is the type of a pointer to an
8 bit integer (i.e., to a character). Note that function names in LLVM always
start with @.

Before running a compiled Javalette program, myfile.bc must be linked with
runtime.bc, a file implementing the primitive functions, which we will provide.
In fact, this file is produced by giving clang a simple C file with definitions such
as

void printInt(int x) {
printf("%d\n",x);

}

7.3 An example

The following LLVM code demonstrates some of the language features in LLVM.
It also serves as an example of what kind of code a Javalette compiler could
generate for the fact function in section 3.1.

define i32 @main() {

21

entry: %t0 = call i32 @fact(i32 7) ; function call
call void @printInt(i32 %t0)
ret i32 0

}

define i32 @fact(i32 %__p__n) {
entry: %n = alloca i32 ; allocate a variable on stack

store i32 %__p__n , i32* %n ; store parameter
%i = alloca i32
%r = alloca i32
store i32 1 , i32* %i ; store initial values
store i32 1 , i32* %r
br label %lab0 ; branch to lab0

lab0: %t0 = load i32* %i ; load i
%t1 = load i32* %n ; and n
%t2 = icmp sle i32 %t0 , %t1 ; boolean %t2 will hold i <= n
br i1 %t2 , label %lab1 , label %lab2 ; branch depending on %t2

lab1: %t3 = load i32* %r
%t4 = load i32* %i
%t5 = mul i32 %t3 , %t4 ; compute i * r
store i32 %t5 , i32* %r ; store product
%t6 = load i32* %i ; fetch i,
%t7 = add i32 %t6 , 1 ; add 1
store i32 %t7 , i32* %i ; and store
br label %lab0

lab2: %t8 = load i32* %r
ret i32 %t8

}

We note several things:

• Registers and local variables have names starting with %.

• The syntax for function calls uses conventional parameter lists (with type
info for each parameter).

• Booleans have type i1, one bit integers.

• After initialization, we branch explicitly to lab0, rather than just falling
through.

22

7.4 LLVM tools

Your compiler will generate a text file with LLVM code, which is conventionally
stored in files with suffix .ll. There are then several tools you might use:

• The assembler llvm-as, which translates the file to an equivalent binary
format, called the bitcode format, stored in files with suffix .bc This is
just a more efficient form for further processing. There is a disassembler
llvm-dis that translates in the opposite direction.

• The linker llvm-link, which can be used to link together e.g. main.bc
with bitcode file runtime.bc that defines the function @printInt and the
other IO functions. By default, two files are written, a.out and a.out.bc.
As one can guess from the suffix, a.out.bc is a bitcode file which contains
the definitions from all the input bitcode files.

• The interpreter/JIT compiler lli, which directly executes its bitcode file
argument, using a Just-In-Time compiler.

• The static compiler llc, which translates the file to a native assembler file
for any of the supported architectures. It can also produce native object
files using the flag -filetype=obj

• The analyzer/optimizer opt, which can perform a wide range of code
optimizations of bitcode.

Here are the steps you can use to produce an executable file from within your
compiler:

• Your compiler produces an LLVM file, let’s call it prog.ll.

• Convert the file to bitcode format using llvm-as. For our example file,
issue the command llvm-as prog.ll. This produces the file prog.bc.

• Link the bitcode file with the runtime file using llvm-link. This step
requires that you give the name of the output file using the -o flag. For
example we can name the output file main.bc like so: llvm-link prog.bc
runtime.bc -o main.bc.

• Generate a native object file using llc. By default llc will produce
assembler output, but by using the flag -filetype=obj it will produce
an object file. The invocation will look like this: llc -filetype=obj
main.bc

• Produce an executable. The LLVM toolchain does not have support for
this. The easiest way to produce an executable from an object file is to
invoke a C compiler, like so: gcc main.o. This will produce the executable
file a.out. If you want to change the name of the output, use the flag -o.

23

Under the hood gcc calls the native linker ld but we do not recommend
that you do that, because it requires specifying extra libraries and possibly
adding paths. GCC solves all that for us. If you want to see how GCC
invokes the ld command use the -v flag when running GCC.

7.5 Optimizations

To wet your appetite, let us see how the LLVM code can be optimized:

proj> cat myfile.ll | llvm-as | opt -std-compile-opts | llvm-dis
declare void @printInt(i32)

define i32 @main() {
entry:

tail call void @printInt(i32 5040)
ret i32 0

}

define i32 @fact(i32 %__p__n) nounwind readnone {
entry:

%t23 = icmp slt i32 %__p__n, 1
br i1 %t23, label %lab2, label %lab1

lab1:
%indvar = phi i32 [0, %entry], [%i.01, %lab1]
%r.02 = phi i32 [1, %entry], [%t5, %lab1]
%i.01 = add i32 %indvar, 1
%t5 = mul i32 %r.02, %i.01
%t7 = add i32 %indvar, 2
%t2 = icmp sgt i32 %t7, %__p__n
br i1 %t2, label %lab2, label %lab1

lab2:
%r.0.lcssa = phi i32 [1, %entry], [%t5, %lab1]
ret i32 %r.0.lcssa

}

The first line above is the Unix command to do the optimization. We cat the
LLVM assembly code file and pipe it through the assembler, the optimizer and
the disassembler. The result is an optimized file, where we observe:

• In main, the call fact(7) has been completely computed to the result
5040. The function fact is not necessary anymore, but remains, since we
have not declared that fact is local to this file (one can do that).

24

• The definition of fact has been considerably optimized. In particular,
there is no more any use of memory; the whole computation takes place in
registers.

• We will explain the phi instruction in the lectures; the effect of the first
instruction is that the value of %indvar will be 0 if control comes to %lab1
from the block labelled %entry (i.e. the first time) and the value will be
the value of %i.01 if control comes from the block labelled %lab1 (i.e. all
other times). The phi instruction makes it possible to enforce the SSA
form; there is only one assignment in the text to %indvar.

If we save the optimized code in myfileOpt.bc (without disassembling it), we can
link it together with the runtime using llvm-link myfileOpt.bc runtime.bc
-o a.out.bc. If we disassemble the resulting file a.out.bc, we get (we have
edited the file slightly in inessential ways):

@fstr = internal constant [4 x i8] c"%d\0A\00"

define i32 @main() nounwind {
entry:

%t0 = getelementptr [4 x i8]* @fstr, i32 0, i32 0
%t1 = call i32 (i8*, ...)* @printf(i8* %t0, i32 5040) nounwind
ret i32 0

}

declare i32 @printf(i8*, ...) nounwind

What remains is a definition of the format string @fstr as a global constant
(\0A is \n), the getelementpointer instruction that returns a pointer to the
beginning of the format string and a call to printf with the result value. Note
that the call to printInt has been inlined, i.e. replaced by a call to printf; so
linking includes optimizations across files.

We can now run a.out.bc using the just-in-time compiler lli. Or, if we prefer,
we can produce native assembler code with llc. On my x86 machine, this gives

.text

.align 4,0x90

.globl _main
_main:

subl $12, %esp
movl $5040, 4(%esp)
movl $_fstr, (%esp)
call _printf
xorl %eax, %eax
addl $12, %esp

25

ret
.cstring

_fstr: ## fstr
.asciz "%d\n"

8 Hints for the extensions

8.1 One-dimensional arrays

To implement this extension, the expression new int[e] will need to allocate
memory on the heap for the array itself and for the length attribute. Further,
the array elements must be accessed by indexing.
LLVM provides support for built-in arrays, but these are not automatically heap-
allocated. Instead, explicit pointers must be used. Thus, an array will have the
LLVM type {i32, [0 x t] }*, where t is the LLVM type of the elements. The
first i32 component holds the length; the second the array elements themselves.
The number of elements in the array is here indicated to be 0; it is thus your
responsibility to make sure to allocate enough memory. For memory allocation
you should use the C function calloc, which initializes allocated memory to
0. You must add a type declaration for calloc, but you do not need to worry
about it at link time; LLVM:s linker includes stdlib.
Indexing uses the getelementptr instruction, which is discussed in detail in the
lectures.
The LLVM does not include a runtime system with garbage collection. Thus,
this extension should really include some means for reclaiming heap memory that
is no longer needed. The simplest would be to add a statement form free(a),
where a is an array variable. This would be straightforward to implement, but
is not necessary to get the credit.
More challenging would be to add automatic garbage collection. LLVM offers
some support for this. If you are interested in doing this, we are willing to give
further credits for that task.

8.2 Multidimensional arrays

This extension involves more work than the previous one. In particular, you must
understand the getelementpointer instruction fully and you must generate
code to iteratively allocate heap memory for subarrays.

8.3 Structures and object-orientation.

Techniques to do these extensions are discussed in the lectures.

26

From an implementation point of view, we recommend that you start with
the extension with pointers and structures. You can then reuse much of the
machinery developed to implement also the first OO extension. In fact, one
attractive way to implement the object extension is by doing a source language
translation to Javalette with pointers and structures.

The full OO extension requires more sophisticated techniques, to properly deal
with dynamic dispatch.

8.4 Native code generation

The starting point for this extension could be your LLVM code, but you could
also start directly from the abstract syntax. Of course, within the scope of this
course you will not be able to produce a code generator that can compete with
llc, but it may anyhow be rewarding to do also this final piece of the compiler
yourself.

One major addition here is to handle function calls properly. Unlike JVM and
LLVM, which both provide some support for function calls, you will now have
to handle all the machinery with activation records, calling conventions, and
jumping to the proper code before and after the call.

There are several assemblers for x86 available and even different syntax versions.
We recommend that you use the NASM assembler and that you read Paul
Carter’s PC assembly tutorial (linked from course web site) before you start the
project, unless you are already familiar with x86 architecture. We do not have
strong requirements on code quality for your code generator; straightforward
code generation is acceptable. In particular, you do not need to implement
register allocation to improve your code. This will also have serious negative
consequences for the performance of your code. Indeed, a preferrable way to
get native code is to use a framework like LLVM, which provides an extensive
infrastructure for code manipulation.

An introduction to x86 assembler will be given in the lectures.

9 Collaboration and academic honesty

As mentioned before, you work individually or in groups of two in this project.
You must develop your own code, and you are not allowed to share your code
with other students or to get, or even look at, code developed by them. On the
other hand, we encourage discussions among participants in the course about
the project. As long as you follow the simple and absolute rule not to share code,
we have no objections to questions asked and answered at a conceptual level.

If you do get significant help from some other participant, it is natural to
acknowledge this in your documentation file.

27

Don’t be a cheater.

28

A Submission format

1. You prepare your submission by creating a new empty directory, sub-
sequently called the root directory. In this directory you create three
subdirectories, doc, lib and src.

2. The root directory must, after building as below, contain the executable
compiler jlc. The compiler is used as follows:

• For submission B and C, the command jlc myFile.jl produces the
executable file a.out. Your code will generate myFile.ll; then your
compiler will call llvm-as and llvm-link to assemble and link.

• Optionally, if you have chosen to implement a native code generator,
the executable is jlc_ARCH, where ARCH is a CPU architecture
such as x86. The command jlc_ARCH myFile.ll should produce
an assembly file myFile.s and an executable file a.out.

The compiler may be a shell script that calls files in src, or a symbolic
link.

3. The subdirectory src must contain all necessary source code. In this
directory, one should be able to build your compiler using gmake. Thus
the directory contains

• The BNF Converter source file, if the tool has been used.
• Alex/Lex/JLex and Happy/Yacc/Cup source files.
• Program modules: abstract syntax, lexer, parser, type checker, code

generator, top level program.
• A Makefile for building the compiler from source. The Makefile

should at least have these targets:
– A default target (the one that is run when the command gmake is

issued). This target should compile all source files in the compiler,
and any runtime library files. It does not need to regenerate any
source files generated by BNFC, or by any of the parser and
lexer generators. After running gmake in the source directory,
the compiler in the root directory should work without further
actions from the user.

– A clean target that removes all files produced during building.

Note that src should not contain obsolete files, such as backup files, bitcode
files or other unnecessary files.

4. In the lib directory you place the following files, as needed:

• For submission B, you place here runtime.ll and have the Makefile
generate runtime.bc, an LLVM bitcode file with the same functions.
The file runtime.ll can be downloaded from the course website.

29

• If you choose to do a native code generator for submission C, you
place a file runtime.c here and have the Makefile generate the
corresponding runtime.o.

• The doc directory must contain one file in html, ps, plain ascii, or pdf
format (proprietary formats not allowed), with the following content:
– An explanation of how the compiler is used (what options, what

output, etc)
– A specification of the Javalette language (if produced by BNF

converter, you may just refer to your BNFC source file).
– A list of shift/reduce conficts in your parser, if you have such

conflicts, and an analysis of them.
– For submission C, an explicit list of extensions implemented.
– If applicable, a list of features not implemented and the reason

why.

5. If your compiler jlc is a shell script, you may also place this file here
before building the tar ball.

6. When you have prepared everything, you create a compressed tar ball:

tar -zcf partA-1.tar.gz doc lib src

This produces the file partA-1.tar.gz that you upload to Fire. We suggest
the naming scheme partX-Y.tar.gz where X is A or B and Y is your
version number (Y=1 the first time you submit, and if your submission is
rejected and you must resubmit, the next has Y=2 etc).
If you prefer, you may compress with bzip2 instead of gzip.

B The tester

The tester is provided as a gzipped tar ball, which can be downloaded from the
course web site. You can be use it to run the tests for your project.

This directory contains a test driver Tests.py, a submission checker Grade.py,
and the subdirectory testsuite contains Javalette test programs.

B.1 Installation

The tester requires a Linux (or Mac OS X, or other Unix) environment and
Python. If you work on your own Windows machine, we cannot assist you in
making the tester work. You should anyhow download the tester to get access to
the testsuite in directory testsuite. Before submitting, you must upload your
project to the lab machines and verify the submission.

30

B.2 Running the tests

Assume that your submission directory is dir and that your compiler is called
jlc. Assume also that dir/lib contains the runtime support file (runtime.bc
for submission B, and possibly runtime.o for submission C).

The test driver takes a number of options:
-h show the help message and exit
-c <FILE> Your compiler (default ./jlc)
-s <A|B|C> The target submission (must be specified)
-t <DIR> testsuite directory (default ./testsuite)

Thus, if you have placed your submission directory, dir, in the directory con-
taining Tests.py, you can test your compiler as follows:

./Tests.py -s A -c dir/jlc

The above command will compile all the basic Javalette programs. The tester
will not attempt to run the good programs, so this is suitable for testing your
compiler for submission A. Note that it is essential that your compiler writes
one line to stderr, containing OK for correct programs and ERROR for incorrect
programs.

To also run the good programs and test them for submission B

./Tests.py -s B -c dir/jlc

The test driver will report its activities in compiling the test programs and
running the good ones. If your compiler is correct, output will end as follows:

Run/Compiled/Total
good 35/35/35 <- OK
bad 56/56 <- OK

total 126/126

All test passed!

All 91 test programs were compiled and gave correct indication OK or ERROR
to stderr. The 35 correct programs were run and gave correct output.

To test the extensions for submission C run the following command. This will
compile and execute them.

./Tests.py -s C -c dir/jlc

31

B.3 Testing your submission

Your submission must be structured as specified in Appendix A. We suggest
that, after having prepared your tarball, you run

./Grade.py -s A /tmp/partA-1.tar.gz

The grading program will extract the content extracting and build your compiler,
before running the test suite. This is how we test your submission, so you can
check that building succeeds before you submit.

32

	Change Log
	v1.0 – March 20
	v1.1 – March 27
	v1.2 – April 15

	Project summary
	Submission deadlines
	Extensions, credits and grades

	The language Javalette
	Some small Javalette programs
	Program structure
	Types
	Statements
	Expressions
	Lexical details
	Primitive functions
	Parameter passing
	Javalette, C, and Java

	The front end
	Extensions
	One-dimensional arrays and for loops
	Multidimensional arrays
	Dynamic data structures
	Object-orientation
	Object orientation with dynamic dispatch
	Native x86 code generation.
	Study of LLVM optimization
	Further possibilities

	Testing the project
	Automated testing

	Code generation: LLVM
	LLVM code
	The structure of a LLVM file
	An example
	LLVM tools
	Optimizations

	Hints for the extensions
	One-dimensional arrays
	Multidimensional arrays
	Structures and object-orientation.
	Native code generation

	Collaboration and academic honesty
	Submission format
	The tester
	Installation
	Running the tests
	Testing your submission

