
Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Compiler construction 2015

Lecture 8

Register allocation

Control-flow graph and basic blocks

Data-flow analysis

Liveness analysis

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Register allocation

An important code transformation

When translating an IR with (infinitely many) virtual registers to
code for a real machine, we must

assign virtual registers to physical registers.

write register values to memory (spill), at program points
when the number of live virtual registers exceeds the number
of available registers.

Register allocation is very important; good allocation can make a
program run an order of magnitude faster (or more) as compared
to poor allocation.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

The interference graph

Live sets and register usage

A variable is live at a point in the CFG, if it may be used in the
remaining code without assignment in between.

If two variables are live at the same point in the CFG, they must be
in different registers.

Conversely, two variables that are never live at the same time can
share a register.

Interfering variables

We say that variables x and y interfere if they are both live at some
point.

The interference graph has variables as nodes and edges between
interfering variables.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Which variables interfere?

void bubble_sort(int a[]) {

int i, j, t, n;

n = a.length;

for (i = 0; i < n; i++) {

for (j = 1; j < n-i; j++) {

if (a[j-1] > a[j]) {

t = a[j-1];

a[j-1] = a[j];

a[j] = t;

}

}

}

}

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

An example

How many registers are needed?

a

fe

d

c

b
Answer: Two!
Use one register for a, c and d,
the other for b, e and f.

Reformulation
To assign K registers to variables
given an interference graph can
be seen as colouring the nodes of
the graph with K colours, with
adjacent nodes getting different
colours.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Register allocation by graph colouring

The algorithm (K colours available)
1 Find a node n with less than K edges. Remove n and its

edges from the graph and put on a stack.
2 Repeat with remaining graph until either

only K nodes remain or
all remaining nodes have at least K adjacent edges.

In the first case, give each remaining node a distinct colour
and pop nodes from the stack, inserting them back into the
graph with their edges and colouring them.

In the second case, we may need to spill a variable to
memory.
Optimistic algorithm: Choose one variable and push on the
stack. Later, when popping the stack, we may be lucky and
find that the neighbours use at most K-1 colours.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Complexity

A hard problem

The problem to decide whether a graph can be K-coloured is
NP-complete.

The simplify/select algorithm on the previous slide works well in
practice; its complexity is O(n2), where n is the number of virtual
registers used.

When optimistic algorithm fails, memory store and fetch
instructions must be added and algorithm restarted.

Heuristics to choose variable to spill:

Little use+def within loop;

Interference with many other variables.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Move instructions

An example
t := s

x := s + 1

y := t + 2

...

s and t interfere,
but if t is not later redefined, they
may share a register.

Coalescing

Move instructions t := s can
sometimes be removed and the
nodes s and t merged in the
interference graph.

Conditions:

No interference between s

and t for other reasons.

The graph must not become
harder to colour. Safe
strategies exist.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Linear scan register allocation

Compilation time vs code quality

Register allocation based on graph colouring produces good code,
but requires significant compilation time.
For e.g. JIT compiling, allocation time is a problem.
The Java HotSpot compiler uses a linear scan register allocator.

Much faster and in many cases only 10% slower code.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

The linear scan algorithm

Preliminaries
Number all the instructions 1, 2, . . . in some way
(for now, think of numbering them from top to bottom).
(Other instruction orderings improves the algorithm; also here
depth first ordering is recommended.)

Do a simplified liveness analysis, assigning a live range to
each variable.
A live range is an interval of integers starting with the number
of the instruction where the variable is first defined and ending
with the number where it is last used.

Sort live ranges in order of increasing start points into list L.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

The linear scan algorithm

The algorithm

Maintain a list, called active, of live ranges that have been
assigned registers. active is sorted by increasing end points
and initially empty.
Traverse L and for each interval I:

Traverse active and remove intervals with end points before
start point of I.
If length of active is smaller than number of registers, add I to
active; otherwise spill either I or the last element of active.

In the latter case, the choice of interval to spill is usually to
keep interval with longest remaining range in active.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

More algorithms

Still a hot topic

Register allocation is still an active research area, an indication of
its importance in practice.

Puzzle solving
Recent work by Pereira and
Palsberg views register
allocation as a puzzle solving
problem.

Board Kinds of Pieces

T
yp

e-
0

T
yp

e-
1

T
yp

e-
2

•••

0 K-1

•••

••• Y Y Y

X

Z

X

Z

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

Figure 1. Three types of puzzles.

2. Puzzles
A puzzle consists of a board and a set of pieces. Pieces cannot
overlap on the board, and a subset of the pieces are already placed
on the board. The challenge is to fit the remaining pieces on the
board.

We will now explain how to map a register file to a puzzle board
and how to map program variables to puzzle pieces. Every resulting
puzzle will be of one of the three types illustrated in Figure 1 or a
hybrid.

2.1 From Register File to Puzzle Board
The bank of registers in the target architecture determines the shape
of the puzzle board. Every puzzle board has a number of separate
areas, where each area is divided into two rows of squares. We
will explain in Section 2.2 why an area has exactly two rows. The
register file may support aliasing, which determines the number of
columns in each area, the valid shapes of the pieces, and the rules
for placing the pieces on the board. We distinguish three types of
puzzles: type-0, type-1 and type-2, where each area of a type-n
puzzle has 2n columns.

Type-0 puzzles. The bank of registers used in PowerPC and the
bank of integer registers used in ARM are simple cases because
they do not support register aliasing. Figure 2(a) shows the puz-
zle board for PowerPC. Every area has just one column that corre-
sponds to one of the 32 registers. Both PowerPC and ARM give a
type-0 puzzle for which the pieces are of the three kinds shown in
Figure 1. We can place an X-piece on any square in the upper row,
we can place a Z-piece on any square in the lower row, and we can
place a Y-piece on any column. It is straightforward to see that we
can solve a type-0 puzzle in linear time in the number of areas by
first placing all the Y-pieces on the board and then placing all the
X-pieces and Z-pieces on the board.

Type-1 puzzles. Figure 2(b) shows the puzzle board for the
floating point registers used in the ARM architecture. This register
bank has 32 single precision registers that can be combined into 16
pairs of double precision registers. Thus, every area of this puzzle
board has two columns, which correspond to the two registers that
can be paired. For example, the 32-bit registers S0 and S1 are in
the same area because they can be combined into the 64-bit register
D0. Similarly, because S1 and S2 cannot be combined into a double
register, they denote columns in different areas. ARM gives a type-
1 puzzle for which the pieces are of the six kinds shown in Figure 1.
We define the size of a piece as the number of squares that it
occupies on the board. We can place a size-1 X-piece on any square
in the upper row, a size-2 X-piece on the two upper squares of any
area, a size-1 Z-piece on any square in the lower row, a size-2 Z-
piece on the two lower squares of any area, a size-2 Y-piece on any

Figure 2. Examples of register banks mapped into puzzle boards.

column, and a size-4 Y-piece on any area. Section 3 explains how
to solve a type-1 puzzle in linear time in the number of areas.

Type-2 puzzles. SPARC V8 [27, pp 33] supports two levels
of register aliasing: first, two 32-bit floating-point registers can
be combined to hold a single 64-bit value; then, two of these 64-
bit registers can be combined yet again to hold a 128-bit value.
Figure 2(c) shows the puzzle board for the floating point registers
of SPARC V8. Every area has four columns corresponding to four
registers that can be combined. This architecture gives a type-2
puzzle for which the pieces are of the nine kinds shown in Figure 1.
The rules for placing the pieces on the board are a straightforward
extension of the rules for type-1 puzzles. Importantly, we can place
a size-2 X-piece on either the first two squares in the upper row
of an area, or on the last two squares in the upper row of an area.
A similar rule applies to size-2 Z-pieces. Solving type-2 puzzles
remains an open problem.

Hybrid puzzles. The x86 gives a hybrid of type-0 and type-
1 puzzles. Figure 3 shows the integer-register file of the x86, and
Figure 2(d) shows the corresponding puzzle board. The registers
AX, BX, CX, DX give a type-1 puzzle, while the registers EBP, ESI,
EDI, ESP give a type-0 puzzle. We treat the EAX, EBX, ECX, EDX
registers as special cases of the AX, BX, CX, DX registers; values in
EAX, EBX, ECX, EDX take up to 32 bits rather than 16 bits. Notice that
x86 does not give a type-2 puzzle because even though we can fit
four 8-bit values into a 32-bit register, x86 does not provide register
names for the upper 16-bit portion of that register. For a hybrid of
type-1 and type-0 puzzles, we first solve the type-0 puzzles and
then the type-1 puzzles.

The floating point registers of SPARC V9 [45, pp 36-40] give
a hybrid of a type-2 and a type-1 puzzle because half the registers
can be combined into quad precision registers.

Chordal graphs

Hack, Grund and Goos exploit the fact that the interference graph
is chordal to get an O(n2) optimal algorithm.
Care is needed when destructing SSA form.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Three-address code

Pseudo-code
To discuss code optimization we employ a (vaguely defined)
pseudo-IR called three-address code which uses virtual registers
but does not require SSA form.

Instructions
x := y # z where x, y and z

are register names or literals
and # is an arithmetic operator.

goto L where L is a label.

if x # y then goto L

where # is a relational
operator.

x := y

return x

Example code
s := 0

i := 1

L1: if i > n goto L2

t := i * i

s := s + t

i := i + 1

goto L1

L2: return s

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Control-flow graph

Code as graph

Each instruction is a node.

Edge from each node to its
possible successors.

Example code
s := 0

i := 1

L1: if i > n goto L2

t := i * i

s := s + t

i := i + 1

goto L1

L2: return s

Example as graph

L1: if i > n goto L2

L2: return s

 goto L1

i := i + 1

s := s + t

t := i * i

s := 0

i := 1

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Static vs dynamic analysis

Dynamic analysis

If in some execution of the program . . .

Dynamic properties are in general undecidable.
Compare with the halting problem:
“P halts” vs “P reaches instruction I”.

Static analysis

If there is a path in the control-flow graph . . .

Basis for many forms of compiler analysis –
but in general we don’t know if that path will ever be taken during
execution.
Results are approximations – we must make sure to err on the
correct side.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Dataflow analysis

A static analysis

General approach to code analysis.
Useful for many forms of intraprocedural optimization:

Common subexpression elimination,
Constant propagation,
Dead code elimination,
. . .

Within a basic block, simpler methods often suffice.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Example: Liveness of variables

Definitions and uses
An instruction x := y # z defines x and uses y and z.

Liveness
A variable v is live at a point P in the control-flow graph (CFG) if
there is a path from P to a use of v along which v is not defined.

Uses of liveness information
Register allocation: a non-live variable need not be kept in
register.

Useless-store elimination: a non-live variable need not be
stored to memory.

Detecting uninitialized variables: a local variable that is live on
function entry.

Optimizing SSA form; non-live vars don’t need Φ-functions.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Liveness analysis: Concepts

Def sets
The def set def(n) of a node n is the set of variables that are
defined in n (a set with 0 or 1 elements).

Use sets
The use set use(n) of a node n is the set of variables that are used
in n.

Live-out sets
The live-out set live-out(n) of a node n is the set of variables that
are live at an out-edge of n.

Live-in sets
The live-in set live-in(n) of a node n is the set of variables that are
live at an in-edge of n.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

An example

1st example revisited

L1: if i > n goto L2

L2: return s

 goto L1

i := i + 1

s := s + t

t := i * i

s := 0

i := 1

Live-in sets

Instr # Set
1 { n }
2 { n, s}
3 {i, n, s}
4 {i, n, s }
5 {i, n, s, t}
6 {i, n, s}
7 {i, n, s}
8 { s }

How can these be computed?

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

The dataflow equations

For every node n, we have

live-in(n) = use(n) ∪ (live-out(n)− def(n))

live-out(n) = ∪s∈succs(n)live-in(s).

where succs(n) denote the set of successor nodes to n.

Computation

Let live-in, def and use be arrays indexed by nodes.
foreach node n do live-in[n] = ∅
repeat

foreach node n do
out = ∪s∈succs(n)live-in[s]
live-in[n] = use[n] ∪ (out - def [n])

until no changes in iteration.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Solving the equations

Example revisited

Instr def use succs live-in
1 {s} {} {2} {}
2 {i} {} {3} {}
3 {} {i,n} {4,8} {}
4 {t} {i} {5} {}
5 {s} {s,t} {6} {}
6 {i} {i} {7} {}
7 {} {} {3} {}
8 {} {s} {} {}

Initialization done above.
live-in updated from top to bottom in each iteration.
But is there a better order?

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Liveness: A backwards problem

Fixpoint iteration

We iterate until no live sets change during an iteration; we
have reached a fixpoint of the equations.

The number of iterations (and thus the amount of work)
depends on the order in which we use the equations within an
iteration.

Since liveness info propagates from successors to
predecessors in the CFG, we should start with the last
instruction and work backwards.
(Since the program contains a loop, this is just a heuristic).

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Another node order

Working from bottom to top, we get

Instr def use succs live-in0 live-in1 live-in2

1 {s} {} {2} {} {n} {n}
2 {i} {} {3} {} {n,s} {n,s}
3 {} {i,n} {4,8} {} {i,n,s} {i,n,s}
4 {t} {i} {5} {} {i,s} {i,n,s}
5 {s} {s,t} {6} {} {i,s,t} {i,n,s,t}
6 {i} {i} {7} {} {i} {i,n,s}
7 {} {} {3} {} {} {i,n,s}
8 {} {s} {} {} {s} {s}

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Implementing data flow analysis

Data structures
Any standard data structure for graphs will work; one should
arrange for succs to be fast.

For sets of variables one may use bit arrays with one bit per
variable. Then union is bit-wise or, intersection bit-wise and
and complement bit-wise negation.

Termination
The live sets grow monotonically in each iteration, so the number
of iterations is bounded by V · N, where N is nr of nodes and V nr
of variables. In practice, for realistic code, the number of iterations
is much smaller.

Node ordering

A heuristically good order can be found by doing a depth-first
search of the CFG and reversing the node ordering.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Basic blocks

Motivations
Control-graph with instructions as nodes become big.

Between jumps, graph structure is trivial (straight-line code).

Definition
A basic block starts at a labelled instruction or after a
conditional jump. (First basic block starts at beginning of
function).

A basic block ends at a (conditional) jump.

We ignore code where an unlabeled statement follows an
unconditional jump (such code is unreachable).

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Example

Testing if n is prime

p := 0

B6

B5

B4

B3

B2

B1
i := 2
p := 1

if n < 2 goto B5

s := i * i
if s > n goto B6

r := n % i
if r == 0 goto B5

i := i + 1
goto B2

Notes
Edges correspond to
branches.

Jump destinations are now
blocks, not instructions.

We may insert empty blocks.

Analysis of control-flow
graphs often done on graph
with basic blocks as nodes.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Liveness analysis for CFG graphs of basic blocks

We can easily modify data flow analysis to work on control flow
graphs of basic blocks.

With knowledge of live-in and live-out for basic blocks it is easy to
find the set of live variables at each instruction.

How do the basic concepts need to be modified to apply to basic
blocks?

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Modified definitions for CFG of basic blocks

Def sets
The def set def(n) of a node n in a CFG is the set of variables that
are defined in an instruction in n.

Use sets
The use set use(n) of a node n is the set of variables that are used
in an instruction in n before a possible redefinition of the variable.

Live-out sets
The live-out set live-out(n) of a node n is the set of variables that
are live at an out-edge of n.

Live-in sets
The live-in set live-in(n) of a node n is the set of variables that are
live at an in-edge of n.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Another dataflow problem: dominators

Definition
In a CFG, node n dominates node m if every path from the start
node to m passes through n.
Particular case: we consider each node to dominate itself.

Concept has many uses in compilation.

Prime test CFG
B1

B6

B5B4

B3

B2

Questions
Write dataflow equations for
dominance.

How would you solve the
equations?

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

An example of optimization in LLVM

int f () {

int i, j, k;

i = 8;

j = 1;

k = 1;

while (i != j) {

if (i==8)

k = 0;

else

i++;

i = i+k;

j++;

}

return i;

}

Comments
Human reader sees, with some
effort, that the C/Javalette function
f returns 8.

We follow how LLVM:s
optimizations will discover this
fact.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Step 1: Naive translation to LLVM
define i32 @f() {

entry:

%i = alloca i32

%j = alloca i32

%k = alloca i32

store i32 8, i32* %i

store i32 1, i32* %j

store i32 1, i32* %k

br label %while.cond

while.cond:

%tmp = load i32* %i

%tmp1 = load i32* %j

%cmp = icmp ne i32 %tmp, %tmp1

br i1 %cmp, label %while.body,

label %while.end

while.body:

%tmp2 = load i32* %i

%cmp3 = icmp eq i32 %tmp2, 8

br i1 %cmp3, label %if.then,

label %if.else

if.then:

store i32 0, i32* %k

br label %if.end

if.else:

%tmp4 = load i32* %i

%inc = add i32 %tmp4, 1

store i32 %inc, i32* %i

br label %if.end

if.end:

%tmp5 = load i32* %i

%tmp6 = load i32* %k

%add = add i32 %tmp5, %tmp6

store i32 %add, i32* %i

%tmp7 = load i32* %j

%inc8 = add i32 %tmp7, 1

store i32 %inc8, i32* %j

br label %while.cond

while.end:

%tmp9 = load i32* %i

ret i32 %tmp9

}

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Step 2: Translating to SSA form (opt -mem2reg)

define i32 @f() {

entry:

br label %while.cond

while.cond:

%k.1 = phi i32 [1, %entry],

[%k.0, %if.end]

%j.0 = phi i32 [1, %entry],

[%inc8, %if.end]

%i.1 = phi i32 [8, %entry],

[%add, %if.end]

%cmp = icmp ne i32 %i.1, %j.0

br i1 %cmp, label %while.body,

label %while.end

while.body:

%cmp3 = icmp eq i32 %i.1, 8

br i1 %cmp3, label %if.then,

label %if.else

if.then:

br label %if.end

if.else:

%inc = add i32 %i.1, 1

br label %if.end

if.end:

%k.0 = phi i32 [0, %if.then],

[%k.1, %if.else]

%i.0 = phi i32 [%i.1, %if.then],

[%inc, %if.else]

%add = add i32 %i.0, %k.0

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 %i.1

}

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Step 3: Sparse Conditional Constant Propagation
(opt -sccp)

define i32 @f() {

entry:

br label %while.cond

while.cond:

%j.0 = phi i32 [1, %entry],

[%inc8, %if.end]

%k.1 = phi i32 [1, %entry],

[0, %if.end]

%cmp = icmp ne i32 8, %j.0

br i1 %cmp, label %while.body,

label %while.end

while.body:

br i1 true, label %if.then,

label %if.else

if.then:

br label %if.end

if.else:

br label %if.end

if.end:

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 8

}

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Step 4: CFG Simplification (opt -simplifycfg)
define i32 @f() {

entry:

br label %while.cond

while.cond:

%j.0 = phi i32 [1, %entry],

[%inc8, %if.end]

%k.1 = phi i32 [1, %entry],

[0, %if.end]

%cmp = icmp ne i32 8, %j.0

br i1 %cmp, label %if.end,

label %while.end

if.end:

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 8

}

Comments
If the function terminates, the
return value is 8.

opt has not yet detected that the
loop is certain to terminate.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Step 5: Dead Loop Deletion (opt -loop-deletion)

define i32 @f() {

entry:

br label %while.end

while.end:

ret i32 8

}

One more -simplifycfg step
yields finally

define i32 @f() {

entry:

ret i32 8

}

For realistic code, dozens of passes are performed, some of them
repeatedly. Many heuristics are used to determine order.

Use opt -std-compile-opts for a default selection. In LLVM 3.6
and later, use -O3 instead.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Simple constant propagation

A dataflow analysis based on SSA form

Uses values from a lattice L with elements
>: Not a constant, as far as the analysis can tell.
c1, c2, c3, . . .: The value is constant, as indicated.
⊥: Yet unknown, may be constant.
Each variable v is assigned an initial value val(v) ∈ L:
Variables with definitions v := c get val(v) = c,
input variables/parameters v get val(v) = >,
and the rest get val(v) = ⊥.

The lattice L

c1 c2 c3 c4 . . .

The lattice order
⊥ ≤ c ≤ > for all c.
ci and cj not related.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Propagation phase, 1

Iteration

Initially, place all names n with val(n) 6= > on a worklist.
Iterate by picking a name from the worklist, examining its uses and
computing val of the RHS’s, using rules as

0 · x = 0 (for any x)

x · ⊥ = ⊥
x · > = > (x 6= 0)

plus ordinary multiplication for constant operands.

For φ-functions, we take the join ∨ of the arguments, where
⊥ ∨ x = x for all x , > ∨ x = > for all x , and

ci ∨ cj =

{
>, if ci 6= cj

ci , otherwise.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Propagation phase, 2

Iteration, continued
Update val for the defined variables, putting variables that get a
new value back on the worklist.
Terminate when worklist is empty.

Termination
Values of variables on the worklist can only increase (in lattice
order) during iteration. Each value can only have its value
increased twice.

A disappointment

In our running example, this algorithm will terminate with all
variables having value >.

We need to take reachability into account.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Sparse Conditional Constant Propagation

Sketch of algorithm

Uses also a worklist of
reachable blocks.

Initially, only the entry block is
reachable.

In evaluation of φ functions,
only ⊥ flows from
unreachable blocks.

New blocks added to worklist
when elaborating terminating
instructions.

Result for running example as
shown to the right

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Correctness of SCCP

A combination of two dataflow analyses

Sparse conditional constant propagation can be seen as the
combination of simple constant propagation and reachability
analysis/dead code analysis.

Both of these can be expressed as dataflow problems and a
framework can be devised where the correctness of such
combination can be proved.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Final steps

Control flow graph simplification

Fairly simple pass; SCCP does not change graph structure of CFG
even when “obvious” simplifications can be done.

Dead Loop Elimination

Identifies an induction variable (namely j), which

increases with 1 for each loop iteration,

terminates the loop when reaching a known value,

is initialised to a smaller value.

When such a variable is found, loop termination is guaranteed and
the loop can be removed.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Optimizations of loops

In computationally demanding applications, most of the time is
spent in executing (inner) loops.

Thus, an optimizing compiler should focus its efforts in improving
loop code.

The first task is to identify loops in the code. In the source code,
loops are easily identified, but how to recognize them in a low level
IR code?

A loop in a CFG is a subset of the nodes that

has a header node, which dominates all nodes in the loop.

has a back edge from some node in the loop back to the
header.
A back edge is an edge where the head dominates the tail.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Moving loop-invariant code out of the loop

A simple example

for (i=0; i<n; i++)

a[i] = b[i] + 3*x;

should be replaced by

t = 3*x;

for (i=0; i<n; i++)

a[i] = b[i] + t;

We need to insert an extra
node (a pre-header) before the
header.

Not quite as simple

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] = b[i][j]+10*i+3*x;

should be replaced by

t = 3*x;

for (i=0; i<n; i++) {

u = 10*i + t;

for (j=0; j<n; j++)

a[i][j] = b[i][j] + u;

}

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Induction variables

A basic induction variable is an (integer) variable which has a
single definition in the loop body, which increases its value with a
fixed (loop-invariant) amount.

Example: n = n + 3

A basic IV will assume values in arithmetic progression when the
loop executes.

Given a basic IV we can find a collection of derived IV’s, each of
which has a single def of the form
m = a*n+b;
where a and b are loop-invariant.
The def can be extended to allow RHS of the form a*k+b where
also k is an already established derived IV.

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Strength reduction for IV’s

n is a basic IV (only def is to
increase by 1).
k is derived IV.

Replace multiplication involved in
def of k by addition.

while (n<100) {

k = 7*n + 3;

a[k]++;

n++;

}

Replace multiplication involved in
def of derived IV by addition.

k = 7*n + 3;

while (n<100) {

a[k]++;

n++;

k+=7;

}

Could there be some problem with this transformation?

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Strength reduction for IV’s, continued

The loop might not execute at all,
in which case k would not be
evaluated.
Better to perform loop inversion
first.

if (n<100) {

k = 7*n + 3;

do {

a[k]++;

n++;

k+=7;

} while (n<100);

}

If n is not used after the loop, it
can be eliminated from the loop

if (n<100) {

k = 7*n + 3;

do {

a[k]++;

k+=7;

} while (k<703);

}
Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

One more example

Sample loop
int sum = 0;

for(i=0; i<1000; i++)

sum += a[i];

Strength reduction/IV techniques

%sum = 0

%off = 0

%addr = %addr.a

%end = add %addr.a,4000

L1: %a.i = load %addr

%sum = add %sum,%a.i

%addr = add %addr, 4

%stop = cmp lt %addr,%end

br %stop, L1, L2

L2:

What can these techniques do for
this loop?

Naive assembler code
%sum = 0

%i = 0

L1: %off = mul %i, 4

%addr = add %addr.a,%off

%a.i = load %addr

%sum = add %sum,%a.i

%i = add %i, 1

%stop = cmp lt %i,1000

br %stop, L1, L2

L2:

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Loop unrolling

for (i=0; i<100; i++) for (i=0; i<100; i=i+4) {

a[i] = a[i] + x[i] a[i] = a[i] + x[i]

a[i+1] = a[i+1] + x[i+1]

a[i+2] = a[i+2] + x[i+2]

a[i+3] = a[i+3] + x[i+3]

}

In which ways is this an improvement?

What to do if upper bound is n?

Is unrolling four steps the best choice?

What could be the disadvantages?

Register Allocation Control-flow graph Liveness analysis An example Constant propagation Loop optimization

Summing up

On optimization

We have only looked at a few of many, many techniques.

Modern optimization techniques use sophisticated algorithms and
clever data structures.

Frameworks such as LLVM make it possible to get the benefits of
state-of-the-art techniques in your own compiler project.

