
Software Engineering for Compilers

Josef Svenningsson

Compiler Construction, Spring 2015

Structuring the project

Compiler structure

Passes
Lexer
Parser
Type checker
Code generator
Return checking can be done as a separate pass or as part of
the type checker.

Structuring passes
In functional languages, a pass correspond to a function
In OO languages, a pass corresponds to a visitor method

What you have to do

BNFC takes care of lexing and parsing. However, you will have
to change the BNFC file for Javalette that we provide for you
Write typechecker
Write code generator
Write a main function which connects the above pieces
together and invokes the various LLVM tools to generate an
executable program (for submissions B and C.)

Version control

I highly recommend that you use version control software.
Using version control software is an essential practice when
developing code.
However, do not put your code in a public repository, where
others can see your code.

Testing compilers

Trusting the compiler

Bugs
When finding a bug, we go to great lengths to find it in our own
code.

Most programmers trust the compiler to generate correct code
The most important task of the compiler is to generate correct
code

Establishing Compiler Correctness

Alternatives
Proving the correctness of a compiler is prohibitively expensive
(however, see the CompCert project)
Testing is the only viable option

Testing compilers

Most compilers use unit testing
They have a big collection of example programs which are used
for testing the compiler
For each program the expected output is stored in the test suite
Whenever a new bug is found, a new example program is
added to the test suite. This is known as regression testing.

Random testing

Random testing
Generating random inputs and check correctness of output
Used by e.g. QuickCheck

Random Testing For Compilers

Testing compilers using random testing means generating
programs in the source language.
Writing good random test generators for a language is very
difficult
Different parts of the compiler might need different generators:

The parser needs random strings, but they need to be skewed
towards syntactically correct programs in order to be useful.
The type checker needs a generator which can generate type
correct programs (with high probablity)

It can be hard to know what the correct execution of a
program is.
We need another compiler or interpreter to test against.
What if the generated program doesn’t terminate, or takes a
very long time?
Using random testing for compilers is a lot of work.

Project

Remember to test your compiler!
Use the provided test suite!
Write your own tests!

Compiler Bootstrapping

A real language

Some people say:
A programming language isn’t real until it has a self-hosting
compiler

A self-hosting compiler

If you’re designed an awesome programming language you would
probably want to program in it.
In particular, you would want to write the compiler in this language.

The chicken and egg problem

If we want to write a compiler for the language X in the language X,
how does the first compiler get written?

Solutions
Write an interpreter for language X in language Y.
Write another compiler for language X in language Y.
Write the compiler in a subset of X which is possible to
compile with an existing compiler.
Hand-compile the first compiler.

Porting to new architectures

A related problem
How to port a compiler to a new hardware architecture.

Solution: Cross-compilation
Let the compiler emit code for the new architecture while still
running on an old architecture.

Writing Makefiles

Make

The utility make is very handy for compiling large projects
It can help to track which files have been edited and recompile
object files and programs where necessary.

Rules

A Makefile consists of rules which specifies:

Which target file will be generated
How these files are generated.

General structure of rules
target: dependencies

shell commands specifying how to generate target

Concrete example
module.o : module.c

gcc -c module.c -o module.o

Caveat

The space before the shell commands needs to be a tab stop!
If you just use spaces then the commands will not execute.

Pattern rules

When having lots of targets it can be inconvenient to list all of
them in the in a Makefile.
Then pattern rules come in handy

%.o : %.c
gcc -c $< -o $@

Using make

Invoking make without any arguments will make the first target
in the Makefile.
When giving make a target as an argument it will try to build
that target and any of its dependencies if needed.

PHONY rules

Sometimes it is convenient to have targets which do not
produce files.
A common example is clean which removes all generated files.
These targets should be declared as PHONY

.PHONY clean

clean:
rm -f *.o

Outlook

There is a lot more the make, but these basic principles will get
you very far.
make is not without flaws. But it is very widely available and
good to know.

Project

In the project you automatically get a Makefile from the BNFC
tool.
Don’t forget to make clean before packaging your solution for
submission
It can be very convenient to have a target which automatically
makes a package for submission

Managing state in the compiler

OO vs functional implementation language

When writing the type checker and code generator, the
compiler needs to carry around symbol tables with information
about e.g. the type of a variable.
This is handled differently when implementing the compiler in
an OO language or a functional language.

OO
In OO languages it is easy to manage state, simply by using a local
variable which is updated, or an object field.

Functional
In functional languages it can be tiresome to carry around state.
Can be made much more convenient by using a state monad.

The state monad

The state monad provides a convenient way to carrying around state
in Haskell

data CompileState =

data CompileMonad a = CM (State CompileState a)

State transformer

For debugging purposes it is often convenient to use the state
monad transformer on top of the IO monad.
This allows for easily printing debug-information.

data CompileState =

data CompileMonad a = CM (StateT CompileState IO a)

State monad demo

Live coding

The lens package

The package lens provides functions which makes it more
convenient to use the state monad.
Suppose we wish to use the following state in our state monad

data FState =
FState { _consts :: [Int]

, _subst :: [(V,V)]
, _nameGen :: Int
}

makeLenses ''FState

This produces lenses named const, subst and nameGen.
Note the underscores in the names!
Requires language extension TemplateHaskell.

State monad and lenses: Getting

Getting a field in the state

Without lenses
st <- get
let c = const st

With lenses
c <- using const

State monad and lenses: Setting

Setting a field in the state

Without lenses
set (st {const = []})

With lenses
const .= []

State monad and lenses: Updating

Updating a field in the state

Without lenses
set (st {const = i : const st)})

With lenses
const %= (i:)

State monad and lenses

The lens library is a huge library with lots of convenient
functionality.
We have only scratched the surface here.
It is not mandatory to use either the state monad or the lens
library in the project
Use the tools you feel are helpful

