
Measures of sequence similarity

Hamming distance:
Number of positions with mismatching characters.
Defined for two str ings of equal length.

agtc
cgta

Levenshtein distance:
Minimum number of edit operations (delete, inser t, change a single
character) needed to change one sequence into another.

agtcc
cgctca

Graham Kemp, Chalmers University of Technology

Dotplots

A pictor ial representation of the similarity between two sequences.

Compare a sequence with itself:
Repeats
Palindromic sequences

Compare two sequences:
Any path from upper left to lower right represents an alignment.
Hor izontal or ver tical moves correspond to gaps in one of the
sequences.
Path with highest score corresponds to an optimal alignment.

Graham Kemp, Chalmers University of Technology

Dotplots

C

C

C

A

A
T

G
G

GA C T A G G A A G C G CT G A

T
A
G
G
A

A
G
C
A

A

Graham Kemp, Chalmers University of Technology

Each path represents an alignment

C

A

G

T

A T GC

C

A

G

T

A T GC

C

A

G

T

A T GC

A-CGT -ACGT- ACGT
| || |
ATCG- AT--CG ATCG

• Vertical steps add a gap to the horizontal sequence
• Hor izontal steps add a gap to the ver tical sequence

Graham Kemp, Chalmers University of Technology

How many paths?

Start

Graham Kemp, Chalmers University of Technology

Do we have to enumerate all paths?

AStart Finish

Graham Kemp, Chalmers University of Technology

Pairwise global alignment (Needleman-Wunsc h algorithm)

Rigorous algorithms use dynamic programming to find an optimal
alignment.

• match score
• mismatch score
• gap penalty

F(i , j) = max







F(i −1, j −1) + s(xi ,y j)

F(i −1, j) − d

F(i , j −1) − d

Graham Kemp, Chalmers University of Technology

Dynamic programming

F(i, j)

F(i−1, j−1)

F(i, j−1)

−d

−d+s(xi,yj)

F(i−1, j)

Graham Kemp, Chalmers University of Technology

Score matrix

A C G T A

A

T

C

G

A

Graham Kemp, Chalmers University of Technology

Percent identity

Having obtained an alignment, it is common to quantify the similarity
between a pair of sequences by stating the percent identity.

-ACGATAG-CGAAACCAAAA
||| ||| ||| |
CAGC-TAGCCGATGTC----

Count the number of alignment positions with matching characters and
divide by ... what?

• the length of the shortest sequence?
• the length of the alignment?
• the average length of the sequences?
• the number of non-gap positions?
• the number of equivalenced positions excluding overhangs?

Graham Kemp, Chalmers University of Technology

Is the similarity significant, or could it be due to chance?

Even if two proteins are unrelated, we would expect some similarity
simply by chance.

Is the alignment score significantly higher than random?

Align random permutations of the sequences, and find the mean and
standard deviation of the resulting distribution.

The z-score reflects the significance of a global similarity score.

z-score =
score − mean

standard deviation

Larger values imply greater significance.

Graham Kemp, Chalmers University of Technology

Pairwise local alignment (Smith-Waterman algorithm)

Local similarities may be masked by long unrelated regions.

A minor modification to the global alignment algorithm.

• If the score for a subalignment becomes negative, set the score to
zero.

F(i, j) = max







0

F(i −1, j −1) + s(xi,y j)

F(i −1, j) − d

F(i, j −1) − d

• Tr ace back from the position in the score matrix with the highest
value.

• Stop at cell where score is zero.

Graham Kemp, Chalmers University of Technology

More realistic similarity measures

Not all substitutions are equally likely.

• A transition between two pur ines (A, G) or between two
pyrimidines (C, T/U) is more common than a purine-pyr imidine
transversion.

• Replacement of one amino acid residue by another with similar
size or physiochemical properties is more common than
replacement by a dissimilar amino acid residue.

Inser tion/deletion of N contiguous amino acid residues or nucleotides is
more likely than N independent insertion/deletion events.

Thus, we should have different penalties for opening gap and for
extending a gap.

Graham Kemp, Chalmers University of Technology

Possible substitution matrices for DNA

A C G T
A 2 -1 -1 -1
C -1 2 -1 -1
G -1 -1 2 -1
T -1 -1 -1 2

A C G T
A 2 -2 -1 -2
C -2 2 -2 -1
G -1 -2 2 -2
T -2 -1 -2 2

Graham Kemp, Chalmers University of Technology

Relative likelihood and alignment score

Match model (M):
Sequences assumed to be dependent. Residues xi and yi at position
i in the alignment occur together with probability pxi yi

.
Random model (R):

Sequences assumed to be independent. Residues xi and yi at
position i in the alignment occur together with probability qxi

qyi
.

We can score an alignment using the log of the relative likelihood:

S = log 


Pr(x, y|M)

Pr(x, y|R)



= log
px1y1

px2y2
. . . pxn yn

qx1
qy1

qx2
qy2

. . .qxn
qyn

=
n

i=1
Σ log 


pxi yi

qxi
qyi




=
n

i=1
Σ s(xi,yi)

Graham Kemp, Chalmers University of Technology

Percent accepted mutations

Expresses scores as log-odds values.

Score of mutation a-b is

log
observed a-b mutation rate

mutation rate expected from amino acid frequencies

Frequencies of substitutions of each pair of amino acid residues,
extracted from alignments of closely related proteins.

PAM1 reflects the amount of evolutionar y change that yields an average
of one mutation per 100 amino acids.

Can assume that no position has changed more than once.

Correct for different amino acid abundances.

Graham Kemp, Chalmers University of Technology

PAM substitution matrices

Extrapolate to a family of PAMk matr ices by multiplying the PAM1 matrix
by itself k times.

Different PAM matrices are more suitable when comparing sequences
that have diverged by different amounts.

The PAM250 matrix is commonly used.

250 mutations per 100 amino acids.

Sequences still 20% identical:
• some positions change many times, while others don’t change at all.
• some positions change one or more times, then revert back to the

or iginal amino acid residue.

Graham Kemp, Chalmers University of Technology

PAM250
A R N D C Q E G H I L K M F P S T W Y V

A 2
R -2 6
N 0 0 2
D 0 -1 2 4
C -2 -4 -4 -5 4
Q 0 1 1 2 -5 4
E 0 -1 1 3 -5 2 4
G 1 -3 0 1 -3 -1 0 5
H -1 2 2 1 -3 3 1 -2 6
I -1 -2 -2 -2 -2 -2 -2 -3 -2 5
L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6
K -1 3 1 0 -5 1 0 -2 0 -2 -3 5
M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6
F -4 -4 -4 -6 -4 -5 -5 -5 -2 1 2 -5 0 9
P 1 0 -1 -1 -3 0 -1 -1 0 -2 -3 -1 -2 -5 6
S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 3
T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -2 0 1 3
W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10
V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4

Graham Kemp, Chalmers University of Technology

BLOSUM substitution matrices

Henikoff, S. and Henikoff, J.G. (1992) ‘‘Amino acid substitution
matr ices from protein blocks’’, Proc. Natl. Acad. Sci. USA,
89:10915-10919

Based on large collection of multiple alignments of similar ungapped
segments.

scoreab = log
observed relative frequency of aligned pairs ab

expected probability of pair ab

Pairs are only counted between segments that are more than x%
identical.

Different values of x give different BLOSUM matrices.

The BLOSUM62 matrix is commonly used.

Graham Kemp, Chalmers University of Technology

Deriving a frequenc y table from blocks

For each column of the block, count the number of matches and
mismatches between pairs of sequences.
To illustrate the calculation, suppose we have a single block with one
column, containing 9 A residues and 1 S residue.
In this case, there are 36 AA pairs and 9 AS or SA pairs.
That is, f AA = 36 and f AS = 9
Each column of each block in the blocks database will contribute to the
obser ved frequency counts.
pi is based on the proportion of residue type i in the whole blocks
database.

Graham Kemp, Chalmers University of Technology

Computing a logarithm of odds (Lod) matrix

Obser ved probability for each pair i,j is:

qij =
fij

20

k=1
Σ

k

l=1
Σ fkl

Expected probability for each i,j pair is:

eij =




pi p j if i = j

2pi p j if i ≠ j

Logar ithm of odds is:
sij = log2(qij /eij)

sij is multiplied by 2, then rounded to the nearest integer to give the
BLOSUM score.

Graham Kemp, Chalmers University of Technology

BLOSUM62
A R N D C Q E G H I L K M F P S T W Y V

A 4
R -1 5
N -2 0 6
D -2 -2 1 6
C 0 -3 -3 -3 9
Q -1 1 0 0 -3 5
E -1 0 0 2 -4 2 5
G 0 -2 0 -1 -3 -2 -2 6
H -2 0 1 -1 -3 0 0 -2 8
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

Graham Kemp, Chalmers University of Technology

Whic h substitution matrix should I use?

Use a matrix that corresponds to the evolutionar y distance between the
proteins being compared (usually not known!).

Low PAM matrices are good for finding short, strong similarities.

High PAM matrices are good for finding long, weak similarities.

BLOSUM matrices have been found to perfor m better for detecting weak
homologies than the extrapolated PAM matrices.

Graham Kemp, Chalmers University of Technology

global_alignment.pl

#!/usr/bin/perl -w

$seq1 = "ATCGAT";
$seq2 = "ATACGT";

$MATCH = 2;
$MISMATCH = -2;
$GAP = -2;

Initialise the score matrix and the trace matrix

$score_matrix[0][0] = 0;
$trace_matrix[0][0] = "STOP";

for ($row = 1; $row <= length($seq1); $row++) {
 $score_matrix[$row][0] = $score_matrix[$row-1][0] + $GAP;
 $trace_matrix[$row][0] = "UP";
}

for ($column = 1; $column <= length($seq2); $column++) {
 $score_matrix[0][$column] = $score_matrix[0][$column-1] + $GAP;
 $trace_matrix[0][$column] = "LEFT";
}

Fill the score matrix and the trace matrix

for ($row = 1; $row <= length($seq1); $row++) {
 for ($column = 1; $column <= length($seq2); $column++) {
 if (substr($seq1, $row-1, 1) eq substr($seq2, $column-1, 1)) {
 $diagonal_score = $score_matrix[$row-1][$column-1] + $MATCH;
 } else {
 $diagonal_score = $score_matrix[$row-1][$column-1] + $MISMATCH;
 }
 $left_score = $score_matrix[$row][$column-1] + $GAP;
 $up_score = $score_matrix[$row-1][$column] + $GAP;

 if (($diagonal_score >= $left_score) &&
 ($diagonal_score >= $up_score)) {
 $score_matrix[$row][$column] = $diagonal_score;
 $trace_matrix[$row][$column] = "DIAGONAL";
 } elsif ($left_score >= $up_score) {
 $score_matrix[$row][$column] = $left_score;
 $trace_matrix[$row][$column] = "LEFT";
 } else {
 $score_matrix[$row][$column] = $up_score;
 $trace_matrix[$row][$column] = "UP";
 }
 }
}

Print the score matrix

for ($row = 0; $row <= length($seq1); $row++) {
 for ($column = 0; $column <= length($seq2); $column++) {
 print $score_matrix[$row][$column] . " ";
 }
 print "\n";
}

Trace back from the bottom-right cell

$aligned1 = "";
$aligned2 = "";

$row = length($seq1);
$column = length($seq2);

while ($trace_matrix[$row][$column] ne "STOP") {
 if ($trace_matrix[$row][$column] eq "DIAGONAL") {
 $aligned1 = substr($seq1, $row-1, 1) . $aligned1;
 $aligned2 = substr($seq2, $column-1, 1) . $aligned2;
 $row--;
 $column--;
 } elsif ($trace_matrix[$row][$column] eq "LEFT") {
 $aligned1 = "-" . $aligned1;
 $aligned2 = substr($seq2, $column-1, 1) . $aligned2;
 $column--;
 } elsif ($trace_matrix[$row][$column] eq "UP") {
 $aligned1 = substr($seq1, $row-1, 1) . $aligned1;
 $aligned2 = "-" . $aligned2;
 $row--;
 }
}

print "$aligned1\n";
print "$aligned2\n";

