
Regular expressions

Each character matches itself, except: + ? . * ˆ $ () [] { } | \

A \ before a special character escapes its special meaning.

. matches any single character except a newline
ˆ beginning of a line
$ end of a line
[abc] matches any of the enclosed characters
[ˆabc] matches any character that is not enclosed
[a-m] matches any character in this range
(...) groups a series of pattern elements into a single element
(...|...|...) matches one of the alternatives

Graham Kemp, Chalmers University of Technology

How many consecutive matches?

* matches preceding pattern element zero or more times
+ matches preceding pattern element one or more times
? matches preceding pattern element zero or one times
{N,M} matches preceding pattern element between N and M times
{N} matches preceding pattern element exactly N times
{N,} matches preceding pattern element at least N times

Graham Kemp, Chalmers University of Technology

Character classes

Abbrev. Equiv. patter n Matches
\d [0-9] a digit
\D [ˆ0-9] a non-digit
\w [a-zA-Z_0-9] an alphanumer ic character, or underscore
\W [ˆa-zA-Z_0-9] a non-alphnumer ic character
\s [\t\n\r\f] a whitespace character
\S [ˆ \t\n\r\f] a non-whitespace character

Graham Kemp, Chalmers University of Technology

match1.pl
@seqs = <DATA>;
foreach $a (@seqs) {

chomp($a);
print($a);
if ($a =˜ /ACCCC[AG][AG][AG]GTGT/) {

print("$a matches\n");
} e lse {

print("$a doesn’t match\n");
}

}

__END__
ACCCCAAAGTGT
ACCCCGGGGTGT
ACCCCAGAGTGT

ACCCCAAAGTGT matches
ACCCCGGGGTGT matches
ACCCCAGAGTGT matches

Graham Kemp, Chalmers University of Technology

date .pl

#!/usr/bin/perl

print "Enter date (YYYY-MM-DD): ";
$s = <STDIN>;
chomp($s);

if ($s =˜ /(\d\d\d\d)-(\d\d)-(\d\d)/) {
print "Correctly formed date\n";
print "Year is: $1\n";
print "Month is: $2\n";
print "Day is: $3\n";

}

Correctly formed date
Year is: 2012
Month is: 01
Day is: 23

Graham Kemp, Chalmers University of Technology

Substitutions
Replace substring that matches the pattern:

$string =˜ s/PATTERN/REPLACEMENT_STRING/;

Case-insensitive patter n matching:
$string =˜ s/PATTERN/REPLACEMENT_STRING/i;

Replace all matches:
$string =˜ s/PATTERN/REPLACEMENT_STRING/g;

Remove all substrings that match:
$string =˜ s/PATTERN//g;

Translating characters
Tr anslates all occurrences of the characters found in the search list with
the corresponding character in the replacement list. It returns the number
of characters replaced.

$string =˜ tr/abc/123/;

Graham Kemp, Chalmers University of Technology

substitution.pl

$str1 = "123 45 678 9";
$str2 = "123 45 678 9";
$str3 = "123 45 678 9";
$str4 = "123 45 678 9";
$str5 = "123 45 678 9";

$str1 =˜ s/ //;
$str2 =˜ tr/ /-/;
$c3 = $str3 =˜ s/ //;
$c4 = $str4 =˜ s/ //g;
$c5 = $str5 =˜ tr/ //d;

print "$str1\n"; # 12345 678 9
print "$str2\n"; # 123-45--678---9
print "$str3 ($c3)\n"; # 12345 678 9 (1)
print "$str4 ($c4)\n"; # 123456789 (6)
print "$str5 ($c5)\n"; # 123456789 (6)

Graham Kemp, Chalmers University of Technology

array.1

@num1 = (3,2,5,9,7,13,16);
@num2 = (3..7);
@num3 = (2..4,9);
@subjects = ("biology","chemistry","math");
@mixed = (3,0.5,"Israel",2.7,"China");
@empty = ();

print "@num1\n"; # 3 2 5 9 7 13 1 6
print "@num2\n"; # 3 4 5 6 7
print "@num3\n"; # 2 3 4 9
print "@subjects\n"; # biology chemistry math
print "@mixed\n"; # 3 0 .5 Israel 2.7 China
print "@empty\n"; #

print "Last index: $#num1\n"; # Last index: 6
print "Length: ", $#num1 + 1, "\n"; # Length: 7

Graham Kemp, Chalmers University of Technology

array.2

@nos = (3,2,5,9);
$sum = 0;
print "Numbers: @nos\n";

foreach $k (@nos) {
$sum += $k;
print "$k becomes ";
$k -= 2;
print "$k\n";

}
print "Sum: $sum\n";

Numbers: 3 2 5 9
3 becomes 1
2 becomes 0
5 becomes 3
9 becomes 7
Sum: 19

Graham Kemp, Chalmers University of Technology

array.3

@nos = (3,2,5,9,7,13,16);

$first_elem = $nos[0]; # 3
$third_elem = $nos[2]; # 5

@a1 = @nos[2,3,4,5]; # 5 9 7 1 3
@a2 = @nos[2..5]; # 5 9 7 1 3
@b = @nos[0,3..5]; # 3 9 7 1 3

$nos[5] = 24;
@nos[2..4] = (6,10,8);
print "@nos\n"; # 3 2 6 10 8 24 1 6

@c = @a1; # 5 9 7 1 3
@d = (0, @c, 4); # 0 5 9 7 13 4
@d = (1,@d[1,2]); # 1 5 9
@d = (6,@d,2); # 6 1 5 9 2

Graham Kemp, Chalmers University of Technology

array4.pl

@countries = ("Israel","Norway","France","Argentina");
@sorted_countries = sort(@countries);

@numbers = (1,2,4,8,16,18,32,64);
@sorted_numbers = sort(@numbers);

print "ORIG: @countries\n",
"SORTED: @sorted_countries\n\n",
"ORIG: @numbers\n",
"SORTED: @sorted_numbers\n";

ORIG: Israel Norway France Argentina
SORTED: Argentina France Israel Norway

ORIG: 1 2 4 8 16 18 32 6 4
SORTED: 1 16 18 2 32 4 64 8

Graham Kemp, Chalmers University of Technology

array5.pl

@stack = (1,3,5,7);
push(@stack,9,11,13);

print "@stack\n";

@stack = (1,3,5,7);
$n = shift(@stack);
print "$n\n@stack\n";

1 3 5 7 9 11 1 3
1
3 5 7

Graham Kemp, Chalmers University of Technology

mygrep.pl

#!/usr/bin/perl

$pattern = shift(@ARGV);
while ($_ = <ARGV>) {

if ($_ =˜ /$pattern/) {
print $_;

}
}

#!/usr/bin/perl

$pattern = shift(@ARGV);
while (<>) {

if (/$pattern/) {
print;

}
}

Graham Kemp, Chalmers University of Technology

text.pl

$a = "AAAACCCCGGGGTTACGT";
$b = substr($a, 14, 4);
@c = split(/TT/, $a);
$d = join("TT", @c);
$e = join("TT", "AAAACCCCGGGG", $b);

$f = reverse($b);
$g = join("TT", reverse(@c));

print "$a\n"; # AAAACCCCGGGGTTACGT
print "$b\n"; # ACGT
print "@c\n"; # AAAACCCCGGGG ACGT
print "$d\n"; # AAAACCCCGGGGTTACGT
print "$e\n"; # AAAACCCCGGGGTTACGT
print "$f\n"; # TGCA
print "$g\n"; # ACGTTTAAAACCCCGGGG

Graham Kemp, Chalmers University of Technology

split.pl

$str = "123 45 678 9";

@arr1 = split(/ /, $str);
@arr2 = split(/ /, $str);
@arr3 = split(/\s*/,$str);
@arr4 = split(/\s+/,$str);
@arr9 = split(//, $str);

$_ = "123 45 678 9";
@arrD = split;

$a1 = join(",", @arr1); # 123,45,,678,,,9
$a2 = join(",", @arr2); # 123 45,678, 9
$a3 = join(",", @arr3); # 1,2,3,4,5,6,7,8,9
$a4 = join(",", @arr4); # 123,45,678,9
$a9 = join(",", @arr9); # 1,2,3, ,4,5, , ,6,7,8, , , ,9
$aD = join(",", @arrD); # 123,45,678,9

Graham Kemp, Chalmers University of Technology

hash1.pl
%empty = ();
@weights = (hydrogen,1,carbon,12,oxygen,16);
%weightsa = @weights;
%weights1 = (hydrogen,1,carbon,12,oxygen,16);
%weights2 = (hydrogen=>1, carbon=>12, oxygen=>16);

print "%empty\n";
print %empty, "\n";
print "@weights\n";
print %weightsa, "\n";
print %weights1, "\n";
print %weights2, "\n";

%empty

hydrogen 1 carbon 12 oxygen 16
carbon12hydrogen1oxygen16
carbon12hydrogen1oxygen16
carbon12hydrogen1oxygen16

Graham Kemp, Chalmers University of Technology

hash2.pl
%weights = (hydrogen=>1, carbon=>12, oxygen=>16);

$weights{sulphur} = 32;
$weights{hydrogen} += 1;
$weights{carbon} = $weights{carbon} + 2;

@weights = %weights;

print "@weights\n";
print "%weights\n";
print %weights, "\n";
print $weights{sulphur}, "\n";
print @weights{oxygen, carbon}, "\n";

carbon 14 hydrogen 2 sulphur 32 oxygen 16
%weights
carbon14hydrogen2sulphur32oxygen16
32
1614

Graham Kemp, Chalmers University of Technology

hash3.pl
%weights = (hydrogen=>1, carbon=>12, oxygen=>16);

delete $weights{hydrogen};
if (exists $weights{hydrogen}) {

print "Hydrogen’s weight is $weights{hydrogen}\n";
} e lse {

print "Hydrogen is not in the list\n";
}

@a = each(%weights); print "@a\n"; # c arbon 12
@b = each(%weights); print "@b\n"; # oxygen 16
@c = each(%weights); print "@c\n"; #

%weights = (hydrogen=>1, carbon=>12, oxygen=>16);
while (($e,$w) = each(%weights)) {

print "[$e : $w] ";
}

[carbon : 12] [hydrogen : 1] [oxygen : 16]

Graham Kemp, Chalmers University of Technology

count_nucleotides1.pl

$sequence="ATGCATACCGACCGT";

while ($sequence) {
$nucleotide = chop($sequence);
if ($nucleotide eq "A") { $counts{A} += 1; }
if ($nucleotide eq "C") { $counts{C} += 1; }
if ($nucleotide eq "G") { $counts{G} += 1; }
if ($nucleotide eq "T") { $counts{T} += 1; }

}
@counts = %counts;
print "@counts\n";
print %counts, "\n";

A 4 T 3 C 5 G 3
A4T3C5G3

Graham Kemp, Chalmers University of Technology

count_nucleotides2.pl
$sequence="ATGCATACCGACCGT";
while ($sequence) {

$nucleotide = chop($sequence);
$counts{$nucleotide} += 1;

}

print "Keys: ", keys(%counts), "\n";
print "Values: ", values(%counts), "\n";

foreach $key (keys(%counts)) {
print $key, " has value ", $counts{$key}, "\n";

}

Keys: ATCG
Values: 4353
A has value 4
T has value 3
C has value 5
G has value 3

Graham Kemp, Chalmers University of Technology

