

Identifying a disease causing mutation

Marcela Davila

2015-03-05

Open Access

Molecular Genetics & Genomic Medicine

ORIGINAL ARTICLE

Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome

The study

Alpers syndrome: progressive neurodegenerative dissorder *POLG1* – Alpers Huttenlocher *FARS2* – encoding enzyme to charge mt tRNA with Phe

19 patients: 6 had POLG1 mutations

For this study:

The study

Exome sequencing		Patient I		Patient II		
		Variants	Genes	Variants	Genes	
	Total	124,631	15,978	129,098	16,015	
	Genes encoding mitochondrial protein	1698	671	1882	681	
	Allele frequency <3%	98	94	100	86	
	Predicted deleterious	32	27	18	18	
	Recessive pattern of inheritance	1	1	2	1	

Mutations in PARS2 (Pro) and NARS2 (Asn)

NARS2

PARS2

Identification of SNVs

Sequencing: at the Lab

Cluster generation

Sequencing, imaging and data generation

Sequencing: some applications

Mapping to a reference genome

- a) Unique reads
- b) Everywhere possible
- c) Choose one randomly
- d) Use pair-end data

Bfast, BioScope, **Bowtie**, **BWA**, CLC bio, CloudBurst, Eland/Eland2, GenomeMapper, GnuMap, Karma, **MAQ**, MOM, **Mosaik**, MrFAST/MrsFAST, NovoAlign, PASS, PerM, RazerS, RMAP, SSAHA2, Segemehl, ...

HOW to place the reads?

- a) Ungapped
- b) Gapped

The Sahlgrenska Academy

Bioinformatics

Core Facility

Variant calling

SOAP2, samtools, GATK, Beagle, CRISP, Dindel, FreeBayes, SeqEM, VarScan, Mutect

Variant annotation

Variant list

CHR	POS	REF	OBS	ALLELE	GENE	DESCRIPTION	VARIANT_FUNCTION	EXONIC_FUNCTION
chr1	780785	Т	Α	homozygous	LOC643837	-	ncRNA_intronic	-
chr1	802496	С	Т	heterozygous	FAM41C	-	downstream	-
chr1	887801	A	G	homozygous	NOC2L	Nucleolar complex protein 2 homolog	exonic	Synonymous
chr1	1265154	т	с	homozygous	GLTPD1	Glycolipid transfer protein domain-containing protein 1	downstream	-
chr1	151733327	т	с	heterozygous	MRPL9	39S ribosomal protein L9, mitochondrial	ncRNA_exonic	nonsynonymous
chr1	151733335	т	G	homozygous	MRPL9	39S ribosomal protein L9, mitochondrial	ncRNA_exonic	nonsynonymous
chr1	52306064	TCT	-	heterozygous	NRD1	Nardilysin	ncRNA_exonic	frameshift deletion
chr1	54605319	G	GC	homozygous	CDCP2	CUB domain-containing protein 2	exonic	frameshift substitution
chr3	189507518	С	CAGA	homozygous	TP63	Tumor protein 63	UTR5	-

AA_CHANGE_POS	AA_CHANGE	dbSNP	BUILD	SIFT	PP2	LRT	OMIM	CONSERVED
-		rs2977612	101					
-		rs10157494	119					conserved
NOC2L:uc001abz.3:exon10:c.T1182C:p.T394T	T => T	rs3828047	107					
-		rs307355	79					conserved
MRPL9:uc001eyv.2:exon6:c.A637G:p.I213V,	I => V	rs74228558	130	tolerated	bening	deleterius	611824	conserved
MRPL9:uc001eyv.2:exon6:c.A629C:p.E210A	K => Q	rs8480	52	damaging	damaging	neutral	611824	
NRD1:uc010ong.1:exon2:c.208_0del:p.70_0del,		rs145326984	134					
CDCP2:uc001cwv.1:exon4:c.1224_1224delinsGC,		rs66537746	130					
-		rs34201045	126					conserved

Data visualization: IGV

Variant Filtering

Sample \rightarrow Seq \rightarrow SNPs \rightarrow

$\ldots \rightarrow$ Filtering \rightarrow candidate genes

Control \rightarrow Seq \rightarrow SNPs \rightarrow

+

+

Making sense of the data

Your real work begins...

JRG

Contact information

Visiting address: Medicinaregatan 3B, F1000

bioinformatics@gu.se

www.cf.gu.se/english/Bioinformatics/

Our main goals:

- Set up an interdisciplinary and collaborative environment
- Increase the understanding of statistical and bioinformatics and analysis
- Contribute to the development of a wide range of research projects

Bioinformatics Networks

Our activities

Seminars

March 11th at 11:00

Carbohydrates in Bioinformatics Miguel Rojas, Dept. of Biochemistry and Cell Biology Place: F Andreasson, Medicinaregatan 11

April 16th at 13:00-14:30

Can I trust my network? Assessing network estimation uncertainty using local component resolution José Sanchez, statistician at Bioinformatics Core Facility, GU Place: Skagerak room, 3rd floor at Registercentrum, Medicinaregatan 18G

Confirmed speakers - 2015

Agatha Smialowska, BILS expert at Chalmers University of Technology

Katarina Truvé, BILS expert at Bioinformatics Core Facility, GU

