
Worst-Case
Execution Time

Analysis
Jan Gustafsson, Docent

Mälardalen Real-Time Research Center (MRTC)
Västerås, Sweden

jan.gustafsson@mdh.se

2

C

3

What C are we talking about?

! ”Computation time” - a key component
in the analysis of real-time systems

! You have seen it in formulas such as:

Ri = Ci + ∑ "Ri / Tj# Cj
 j∈hp(i)

Worst-Case
Response Time Period

Where do these C values come from?

Worst-Case
Execution Time

Program timing is not trivial!

Simpler questions
!  What is the program

doing?
!  Will it always do the

same thing?
!  How important is

the result?

4

int f(int x) {
 return 2 * x;

}

Harder questions

!  What is the execution
time of the program?

!  Will it always take the
same time to execute?

!  How important is
execution time?

Program timing
! Most computer programs have varying

execution time
"  Due to input values
"  Due to software characteristics
"  Due to hardware characteristics

! Example: some timed program runs

5

0 execution time

#p
ro

gr
am

 ru
ns

Most runs have
similar execution time

Some take much
longer time (why?)

Is this the longest
execution time...

... or can we get
even longer ones?

safe
upper
timing

bounds

possible
execution times

WCET - definition
! Worst-Case Execution Time = WCET

"  The longest calculation time possible
"  For one program/task when run in isolation
"  Other interesting measures: BCET, ACET

! The goal of a WCET analysis is to derive
a safe upper bound on a program’s WCET

time

safe
lower
timing

bounds

0

 BCET WCET

Presentation outline
! Embedded system fundamentals
! WCET analysis

"  Measurements
"  Static analysis
"  Flow analysis, low-level analysis, and calculation
"  Hybrid approaches

! WCET analysis tools
! The SWEET approach to WCET analysis

!  (Multi-core + WCET analysis?)
! WCET analysis demo (SWEET)

Embedded
systems

fundamentals

Embedded computers
!  An integrated part of a larger system

"  Example 1: A microwave oven contains at
least one embedded processor

"  Example 2: A modern car can contain more
than 100 embedded processors

!  Interacts with the user,
the environment, and
with other computers
"  Often limited or

no user interface
"  Often with

timing constraints

input result

Embedded systems everywhere

! Today, all advanced
products contain
embedded computers!
"  Our society depends on

that they function correctly

11

Embedded systems software

! Amount of software can vary from
extremely small to very large
"  Gives characteristics to the product

! Often developed with target
hardware in mind
"  Often limited resources (memory / speed)
"  Often direct accesses to different HW devices
"  Not always easily portable to other HW

! Many different programming languages
"  C still dominates, but often special purpose languages

! Many different software development tools
"  Not just GCC and/or Microsoft Visual Studio

Embedded system hardware
! Huge variety of embedded

system processors
"  Not just one main processor type as for PCs
"  Additionally, same CPU can be used with various

hardware configurations (memories, devices, …)

! The hardware is often tailored
specifically to the application
"  E.g., using a DSP processor for signal

processing in a mobile telephone

! Cross-platform development
"  E.g., develop on PC and download

final application to target HW

Timely Software - a Challenge 13

"Desktop"
2%

"Embedded"
98%

Some interesting figures
!  4 billion embedded processors sold in 2008

"  Global market worth €60 billion
"  Predicted annual growth rate of 14%
"  Forecasts predict more than 40 billion embedded devices in 2020

!  Embedded processors clearly dominate yearly
production

Source: http://www.artemis-ju.eu/embedded_systems

Real-time systems
! Computer systems where the timely

behavior is a central part of the function
" Containing one or more embedded computers
" Both soft- and hard real-time, or a mixture…

Timing of radio
communication,

speech
recognition,…

Timing of music
playing from MP3 file

Timing of radio
communication, motor

control, rudder and
flaps control,…

Timing of network
communication, motor
control, ABS brakes,

anti-slip control,…

Uses of reliable WCET bounds

! Hard real-time systems
"  WCET needed to guarantee behavior

! Real-time scheduling
"  Creating and verifying schedules
"  Large part of RT research assume

the existence of reliable WCET bounds

! Soft real-time systems
"  WCET useful for system understanding

! Program tuning
"  Critical loops and paths

! Interrupt latency checking

WCET
analysis

Obtaining WCET bounds

! Measurement
" Industrial practice

! Static analysis
" Research front

Measuring for the WCET

! Methodology:
" Determine ”worst-case

input” or run as many
inputs as possible

" Execute and measure
the time

" Add a safety margin

18

19

Measurement issues 1
! What is the worst-case input?

"  In general, the problem of determining the worst case input
value combination to an arbitrary program is very hard.

! Alternative: run all inputs?
"  Typically not possible, since the number of input

combinations typically is huge.
"  For example: 10 variables of size 32 bits => number of

necessary measurement runs = 4 294 967 29510
"  Also keep in mind that the program state is a part of the input

!  In practice: run as many inputs as possible
"  There are some ideas how to test extreme cases and corners
"  Has the worst-case path really been taken? No guarantee!

20

Measurement issues 2
! How to measure the execution time?

"  Option 1: SW methods
! Operating system clocks
! Simulators
! High-water marking

"  Option 2: HW + SW methods
! Add instrumentation code
! Use oscilloscopes, logic analyzers, emulators

logic analyzers or debug support
! The instrumentation may affect the

timing
!  Instrumentation code is often left in

shipped code
! How much instrumention output

can be handled? LEDs

Buzzer

21

SW measurement methods
! Operating system clocks

"  Commands such as time, date and clock
"  Note that all OS-based solutions require

precise HW timing facilities (and an OS)
! Cycle-level simulators

"  Software simulating CPU
"  Correctness vs. hardware?

! High-water marking
"  Keep system running
"  Record maximum time

observed for task
"  Keep in shipping systems,

read at service intervals

22

Using an oscilloscope
! Common equipment for HW debugging

"  Used to examine electrical output
signals of HW

! Observes the voltage or signal
waveform on a particular pin

"  Usually only two to four inputs

! To measure time spent in a routine:
1.  Set I/O pin high when entering routine
2.  Set the same I/O pin low before exiting
3.  Oscilloscope measures the amount of

time that the I/O pin is high
4.  This is the time spent in the routine

23

Using a logic analyzer
! Equipment designed for

troubleshooting digital
hardware

! Have dozens or even
hundreds of inputs
"  Each one keeping track on

whether the electrical signal
it is attached to is currently
at logic level 1 or 0

"  Result can be displayed
against a timeline

"  Can be programmed to start
capturing data at particular
input patterns

Target
board

HW Debugger

24

HW measurement tools
!  In-circuit emulators (ICE)

" Special CPU version revealing internals
! High visibility & bandwidth
! High cost + supportive HW required

! Processors with debug support
" Designed into processor

! Use a few dedicated processor pins
" Using standardized interfaces

! Nexus debug interfaces, JTAG,
Embedded Trace Macrocell, …

" Supportive SW & HW required
" Common on modern chip

Fundamental problems when
using measurements

! Measured time never exceeds WCET

How do we know that we catched
the WCET?
" A safety margin must be added, but how

much is enough?

safe
upper
timing

bounds

possible
execution times

time

safe
lower
timing

bounds

0

 BCET WCET

Only this measurement
is safe (= WCET)!

Measurement will result
in a value ≤ WCET

Static
WCET

analysis

Static WCET analysis
! Do not run the program – analyze it!

"  Using models based on the static properties of the
software and the hardware

! Guaranteed safe WCET bounds
"  Provided all models, input data and analysis

methods are correct
! Trying to be as tight as possible

safe
upper
timing

bounds

possible
execution times

time

safe
lower
timing

bounds

0

 BCET WCET

All derived
bounds will
be ≥ WCET

foo(x,i):

 while(i < 100)

 if (x > 5) then

 x = x*2;

 else

 x = x+2;

 end

 if (x < 0) then

 b[i] = a[i];

 end

 i = i+1;

 end

Again: Causes of
Execution Time Variation

! Execution characteristics
of the software
" A program can often execute

in many different ways
"  Input data dependencies
" Application characteristics

! Timing characteristics
of the hardware
" Clock frequency
" CPU characteristics
" Memories used
" …

Analysis

WCET analysis phases

Reality

Compiler

Object 
Code

Target
Hardware

program

Low level
analysis

Calculation

Flow
analysis

1. Flow analysis
" Bound the number of times

different program parts may
be executed (mostly SW analysis)

2. Low-level analysis
" Bound the execution time

of different program parts
(combined SW & HW analysis)

3. Calculation
" Combine flow- and low-level

analysis results to derive an
upper WCET bound

Actual  
WCET

WCET 
bound

30

Flow
analysis

31

Flow Analysis
! Provides bounds on the number

of times different program parts
may be executed
" Valid for all possible executions

! Examples of provided info:
" Bounds of loop iterations
" Bounds on recursion depth
"  Infeasible paths

!  Info provided by:
" Static program analysis
" Manual annotations

Flow
analysis

Low level
analysis

Calculation

Program

WCET
Estimate

The control-flow graph
 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

Flows as
edges

foo()

C

A

B

D

E

F

G

end

Each block
will run as a

unit

Example program

Flow info characteristics

Basic finiteness

Statically allowed

Actual feasible
paths

 Loop bound: 100

 #F < 10

Control flow graph

Structurally possible
 executions (infinite)

Relation between possible
executions and flow info

WCET found here =
desired result

 foo(x,i):
A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];
 end

G: i = i+1;

 end

foo()

C

B

D

E

F

G

end

A

WCET found here =
 overestimation

Example: Loop bounds
! Loop bound:

"  Depends on possible values
of input variable i
! E.g. if 1 ≤ i ≤ 10 holds for input

value i, then loop bound is 100
"  In general, a very difficult

problem
"  However, solvable for many

types of loops

! Requirement for basic
finiteness (a WCET)
"  All loops must be

upper bound

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

Example: Infeasible path

! Infeasible path:
" Path A-B-C-E-F-G

can not be executed
since C implies ¬F

"  If (x > 5) then it is not
possible that (x*2) < 0

! Limits statically
allowed executions
" Might tighten the

WCET estimate

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i=i+1;

 end

36

Example: Triangular Loop

! Two loops:
" Loop A bound: 100
" Local B bound: 100

! Block C:
" By loop bounds:

100 * 100 = 10 000
" But actually:

100+...+1 = 5 050
! Limits statically

allowed executions
" Might tighten the

WCET estimate

 triangle(a,b):
A: loop(i=1..100)
B: loop(j=i..100)
C: a[i,j]=...
 end loop
 end loop

int$i=0;$
...$$
while(i<100)$
{$
$$...$$
$$i++;$
}$
...$

The mapping problem
!  Flow analysis easier on source code level

"  Semantics of code clearer
"  Easier for programmer/tool to derive flow info

!  Low-level analysis requires binary code
"  The code executed by the processor

!  Question: How to safely map flow source code level
flow information to binary code?

...$
0111111010010111$
0110010100101001$
1001010100111010$
1001010011111110$
1010010101010100$
1001010101010101$
...$

Loop bound
(header): 101

Where is
the loop?

Source code Executable

The mapping problem (cont)
!  Embedded compilers often do a lot of code optimizations

"  Important to fit code and data into limited memory resources
!  Optimizations may significantly change code (and data) layout

"  After optimizations flow info may no longer be valid
!  Solutions:

"  Use special compiler also mapping flow info (not common)
"  Use compiler debug info for mapping (only works with little/no optimizations)
"  Perform flow analysis on binaries (most common)

38

inti=0;$
$...$$
$while(i<100)${$
$$$...$$
$$$i++;$
$}$
$...$

inti=0;$
$...$$
do{$
$$$...$$
$$$i++;$
$}$while(i<100)$
$...$

Flow analysis:
Loop condition
taken 101 times

Compiler: i=0
always holds at
first execution

of loop condition

Loop condition
taken 100 times

Before optimization After optimization

Executable

1000110000011110
1000110000100000
1010110000100000
1010110000011110
1010110000100011
1010111100011001

Linker

Object File

Object File

Object File

twice:
 mov ip, sp
 stmfd sp!, {fp,ip,lr,pc}
 sub fp, ip, #4
 sub sp, sp, #8
 str r0, [fp, #-16]
 ldr r3, [fp, #-16]
 mov r3, r3, asl #1
 str r3, [fp, #-20]
 ldr r3, [fp, #-20]
 mov r0, r3
 ldmea fp, {fp,sp,pc}

Compiler

Embedded SW Tool Chain

C Source

C Source

C Library

C Runtime

Start-up

OS
C Source

WCET

int twice(int a) {
 int temp;
 temp = 2 * a;
 return temp;
}

Affects
timing

Affects
timing Affects

timing Affects
timing Affects

timing

Affects
timing

Affects
timing

40

The SW building tools
! The compiler:

"  Translates an source code file to an object code file
! Only translates one source code file at the time

"  Often makes some type of code optimizations
! Increase execution speed, reduce memory size, …
! Different optimizations give different object code layouts

! The linker:
"  Combines several object code files into one executable

! Places code, global data, stack, etc in different memory parts
! Resolves function calls and jumps between object files

"  Can also perform some code transformations

! Both tools may affect the program timing!

41

Example: compiling & linking
/******************
 * File: main.c
 *****************/
int foo();

int main() {
 return 1 + foo();
}

/******************
 * File: foo.c
 *****************/

int foo() {
 return 1;

}

Contains object
code for main.c

Object code contains an
unresolved call to foo

Compiler main.o

Contains object
code for foo.c

Compiler foo.o

The main.o and
foo.o object code
files are combined

The call to foo
in main has

been resolved

Linker a.exe

42

Common additional files
! C Runtime code:

"  Whatever needed but not supported by the HW
! 32-bit arithmetic on a 16-bit machine
! Floating-point arithmetic
! Complex operations (e.g., modulo, variable-length shifts)

"  Comes with the compiler
"  May have a large footprint

! Bigger for simpler machines
! Tens of bytes of data and tens of kilobytes of code

! OS code:
"  In many ES the OS code is linked together with the rest

of the object code files to form a single binary image

43

Common additional files

!  Startup code:
"  A small piece of assembly code that prepares the way for

the execution of software written in a high-level language
! For example, setting up the system stack

"  Many ES compilers provide a file named
startup.asm, crt0.s, … holding startup code

!  C Library code:
"  A full ANSI-C compiler must provide code that implements

all ANSI-C functionality
! E.g., functions such as printf, memmove, strcpy

"  Many ES compilers only support subset of ANSI-C
"  Comes with the compiler (often non-standard)

Low-level
analysis

Low-Level Analysis
! Determine execution time bounds

for program parts
" Focus of most WCET-related research

! Using a model of the target HW
" The model does not need to model all

HW details
" However, it should safely account for

all possible HW timing effects

! Works on the binary, linked code
" The executable program

Flow
analysis

Program

Low level
analysis

Calculation

WCET
Estimate

Some HW model details
!  Much effort required to safely model CPU internals

"  Pipelines, branch predictors, superscalar, out-of-order, …
!  Much effort to safely model memories

"  Cache memories must be modelled in detail
"  Other types of memories may also affect timing

!  For complex CPUs many features must be
analyzed together
"  Timing of instructions gets history dependant

!  Developing a safe HW timing model troublesome
"  May take many months (or even years)
"  All things affecting timing must be accounted for

Hardware time variability
!  Simpler 4-, 8- & 16-bit processors (H8300, 8051, …):

"  Instructions might have varying execution time due to
argument values

"  Varying data access time due to different memory areas
"  Analysis rather simple, timing fetched from HW manual

!  Simpler 16- & 32-bit processors, with a (scalar) pipe-
line and maybe a cache (ARM7, ARM9, V850E, …):
"  Instruction timing dependent on previously

executed instructions and accessed data:
! State of pipeline and cache

"  Varying access times due to cache hits and misses
"  Varying pipeline overlap between instructions
"  Hardware features can be analyzed in isolation

Hardware time variability
!  Advanced 32- & 64-bit processors (PowerPC 7xx,

Pentium, UltraSPARC, ARM11, …):
"  Many performance enhancing features affect timing

! Pipelines, out-of-order exec, branch pred., caches,
speculative exec.

! Instruction timing gets very history dependent
"  Some processors suffer from timing anomalies

! E.g., a cache miss might give shorter overall
program execution time than a cache hit

"  Features and their timing interact
! Most features must be analyzed together

"  Hard to create a correct and safe
hardware timing model!

!  Multi-cores - discussed later

49

Example: CPU pipelines
! Observation: Most instructions go through

same stages in the CPU
! Example: Classic RISC 5-stage pipeline

IF ID EX MEM WB

Instruction fetch (IF)
 Get the next instruction
from memory to process

(its address is held by PC)

Instruction decode
Determine operation to be

performed (i.e., extract
opcode and arguments)

Execute
Perform the actual

operation (e.g, an add)

Memory access
Load/store values
from/to memory if

needed

Write back
Write the result into
the target register

50

CPU pipelines
!  Idea: Overlap the CPU stages of the instruct-

ions to achieve speed-up
! No pipelining:

"  Next instruction
cannot start before
previous one has
finished all its stages

! Pipelining:
"  In principle: speedup = pipeline length
"  However, often dependencies

between instructions

IF
ID
EX

MEM
WB

1 2 3 5 6 4

IF
ID
EX

MEM
WB

1 2 3 5 6 7 4 8 9 10

I1. add $r0, $r1, $r2
I2. sub $r3, $r0, $r4

Example: RAW
dependency

I2 depends on
completion of
data write of I1

May cause
pipeline stall

51

Pipeline Variants
! None: Simple CPUs (68HC11, 8051, …)
! Scalar: Single pipeline (ARM7,ARM9,V850, …)
! VLIW: Multiple pipelines, static, compiler

scheduled (DSPs, Itanium, Crusoe, …)
! Superscalar: Multiple pipelines, out-of-order

(PowerPC 7xx, Pentium, UltraSPARC, ...)

IF
ID
EX

MEM
WB

1 2 3 5 6 7 4 8 9 10 11 Blue instruction
occupies EX stage
for 2 extra cycles

This stalls both
subsequent
instructions

Example: No Pipeline

52

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

(7 cycles)
(5 c)
(12 c)

(2 c)

(4 c)
(8 c)

(2 c)

" Constant time
for each block
in the code

" Object code
not shown

Example: No pipeline
foo()

C

A

B

D

E

F

G

end

tA=7

tD=2

tB=5

tC=12

tE=4

tF=8

tG=2

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

A

B

Example: Simple Pipeline

tA = 7

B

IF
EXEX
M
F

1 2 3 4 5
tB = 5

IF
EXEX
M
F

1 2 3 4 5 6 7

A IF
EXEX
M
F

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9
IF
EXEX
M
F

10

tAB = 10

δAB = 10 - (7 + 5) = -2

δAB = -2

55

Example: Pipeline result

tA=7

tD=2

tB=5

tC=12

tE=4

tF=8

tG=2

δAB=-2

δBC=-2 δBD=-1

δDE=-2 δCE=-1

δEF=-2

δFG=-1

δEG=-1

δGA=-1

foo()

C

A

B

D

E

F

G

end

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

56

IF
EX
M
F

IF
EX
M
F

Pipeline Interactions

IF
EX
M
F

IF
EX
M
FIF

EX
M
F

IF
EX
M
F

IF
EX
M
F

IF
EX
M
F

Pairwise overlap: speed-up

Interaction across more than
two blocks also possible!
Can be both speed-up or slow-down

Larger
storage
capacity

The memory hierarchy

Main memory

 Cache
memory

Caches store
frequently used

instructions and data
(for faster access)

Main memory has larger
storage capacity but
much longer access

time than caches

Faster
access

time

CPU
Caches increase

average speed, but
give more variable

execution time

Many variants exists:
instruction caches,

data caches,
unified caches,

cache hierarchies, …

The CPU executes
instructions. It also needs
to access data to perform

operations upon

58

Example: Cache analysis
fib:
 mov #1, r5
 mov #0, r6
 mov #2, r7
 br fib_0

fib_1:
 mov r5,r8
 add r6,r5
 mov r8,r6
 add #1,r7

fib_0:
 cmp r7,r1
 bge fib_1

fib_2:
 mov r5,r1
 jmp [r31]

! Performed on the
object code

! Only direct-mapped
instruction cache in
this example

What instructions will
cause cache misses?

Cache misses takes
much more time
than cache hits!

Main memory

 Cache
memory

 CPU

59

Example: Cache analysis

fib:
 mov #1, r5 2 1000
 mov #0, r6 2 1002
 mov #2, r7 2 1004
 br fib_0 2 1006

fib_1:
 mov r5,r8 2 1008
 add r6,r5 2 1010
 mov r8,r6 2 1012
 add #1,r7 2 1014

fib_0:
 cmp r7,r1 2 1016
 bge fib_1 2 1018

fib_2:
 mov r5,r1 2 1020
 jmp [r31] 2 1022

Starting
address

Size of
instruction

! Information
needed for
instruction
cache
analysis

60

Example: Cache analysis
fib:
 mov #1, r5 2 1000
 mov #0, r6 2 1002
 mov #2, r7 2 1004
 br fib_0 2 1006

fib_1:
 mov r5,r8 2 1008
 add r6,r5 2 1010
 mov r8,r6 2 1012
 add #1,r7 2 1014

fib_0:
 cmp r7,r1 2 1016
 bge fib_1 2 1018

fib_2:
 mov r5,r1 2 1020
 jmp [r31] 2 1022

! Mapping to
instruction
cache

61

Example: Cache analysis
fib:
 mov #1, r5
 mov #0, r6
 mov #2, r7
 br fib_0

fib_1:
 mov r5,r8
 add r6,r5
 mov r8,r6
 add #1,r7

fib_0:
 cmp r7,r1
 bge fib_1

fib_2:
 mov r5,r1
 jmp [r31]

miss
hit
hit
hit

miss
hit

miss
hit
hit
hit

62

Example: Cache analysis
fib:
 mov #1, r5
 mov #0, r6
 mov #2, r7
 br fib_0

fib_1:
 mov r5,r8
 add r6,r5
 mov r8,r6
 add #1,r7

fib_0:
 cmp r7,r1
 bge fib_1

fib_2:
 mov r5,r1
 jmp [r31]

miss
hit
hit
hit

miss
hit

miss
hit
hit
hit

hit
hit

hit
hit
hit
hit

Remaining
iterations

First
iteration of

the loop

hit
hit

63

1032: cmp r6,r1

1034: blt foo_5

Cache & Pipeline analysis

 foo_0:

foo_1:

foo_2:

foo_3:

foo_5:

 foo:

foo_4:

info

info

info

info

info

info

info

! Pipeline analysis might
take cache analysis
results as input
" Instructions gets annotated

with cache hit/miss
" These misses/hits

affect pipeline timing
! Complex HW requires

integrated cache &
pipeline analysis

1020:icache miss

1022:icache hit

Analysis of complex CPUs
!  Example: Out-of-order processor

"  Instructions may executes in
parallel in functional units

"  Functional units often replicated
"  Dynamic scheduling of

instructions
"  Do not need to follow

issuing order

!  Very difficult analysis
"  Track all possible pipeline

states, iterate until fixed point
"  Require integrated pipeline/icache

/dcache/branch-prediction analysis

!  Been done for PowerPC 755
"  Up to 1000 states per instruction!

RS holds pending
instructions

If all operands
and the FU are
ready instr. in
RS is put in FU

FUs and CU
forward results
back to RSs

65

Low-level analysis correctness?

! Abstract model of the hardware is used
! Modern hardware often very complex

" Combines many features
" Pipelining, caches, branch prediction,

out-of-order...
! Have all effects been

accounted for?
" Manufactures keep hardware

internals secret
" Bugs in hardware manuals
" Bugs relative hardware specifications

?
Calculation

Calculation
! Derive an upper bound on the

program’s WCET
" Given flow and timing information

! Several approaches used:
" Tree-based
" Path-based
" Constraint-based (IPET)

! Properties of approaches:
" Flow information handled
" Object code structure allowed
" Modeling of hardware timing
" Solution complexity

Flow
analysis

Program

Low level
analysis

Estimate  
calculation

WCET 
Estimate

Example: Combined flow analysis
and low-level analysis result

 foo(x,i):

A: while(i < 100)
B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end
E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

foo()

C

A

B

D

E

F

G

end

tA=7

tD=2

tB=5

tC=12

tE=4

tF=8

tG=2

 ”Loop bound: 100”

”C and F can’t be
taken together”

27 maj 2015 Worst-Case Execution Time Analysis 69

Tree-Based Calculation

loop

foo

header

 if(x>5)

x=x/2

 x=x+2

if(x<0)

b[i]=a[i]

bar(i)

! Use syntax-tree
of program

! Traverse tree
bottom-up

 foo(x):
A: loop(i=1..100)

B: if (x > 5) then

C: x = x*2
 else

D: x = x+2
 end

E: if (x < 0) then

F: b[i] = a[i];
 end

G: bar (i)

 end loop

27 maj 2015 Worst-Case Execution Time Analysis 70

Tree-Based Calculation

loop : 100

()

foo

()

header

(7) if(x>5)

(5)
x=x/2

(12) x=x+2

(2)

if(x<0)

(4)
b[i]=a[i]

(8)

bar(i)

(20)

! Use constant
time for nodes

! Leaf nodes have
definite time

! Rules for
internals

 foo(x):
A: loop(i=1..100)

B: if (x > 5) then

C: x = x*2
 else

D: x = x+2
 end

E: if (x < 0) then

F: b[i] = a[i];
 end

G: bar (i)

 end loop

(7 c)
(5 c)
(12 c)

(2 c)

(4 c)
(8 c)

(20 c)

27 maj 2015 Worst-Case Execution Time Analysis 71

! For a decision
statement: max
of children

! Add time for
decision
itself

Tree-Based: IF statement

loop : 100

()

foo

()

header

(7) if(x>5)

(5) ∑ 17

x=x/2

(12) x=x+2

(2)

if(x<0)

(4) ∑ 12

b[i]=a[i]

(8)

bar(i)

(20)

 foo(x):
A: loop(i=1..100)

B: if (x > 5) then

C: x = x*2
 else

D: x = x+2
 end

E: if (x < 0) then

F: b[i] = a[i];
 end

G: bar (i)

 end loop

27 maj 2015 Worst-Case Execution Time Analysis 72

Tree-Based: LOOP
! Loop: sum the

children
! Multiply by loop

bound
loop : 100

∑ 56 * 100

foo

()

header

(7) if(x>5)

(5) ∑ 17

x=x/2

(12) x=x+2

(2)

if(x<0)

(4) ∑ 12

b[i]=a[i]

(8)

bar(i)

(20)

 foo(x):
A: loop(i=1..100)

B: if (x > 5) then

C: x = x*2
 else

D: x = x+2
 end

E: if (x < 0) then

F: b[i] = a[i];
 end

G: bar (i)

 end loop

27 maj 2015 Worst-Case Execution Time Analysis 73

Tree-Based: Final result
! The function

foo() will take
5600 cycles in
the worst case

loop : 100

∑ 56 * 100

foo

∑ 5600

header

(7) if(x>5)

(5) ∑ 17

x=x/2

(12) x=x+2

(2)

if(x<0)

(4) ∑ 12

b[i]=a[i]

(8)

bar(i)

(20)

 foo(x):
A: loop(i=1..100)

B: if (x > 5) then

C: x = x*2
 else

D: x = x+2
 end

E: if (x < 0) then

F: b[i] = a[i];
 end

G: bar (i)

 end loop

Path-Based Calc
foo()

C

B

D

E

F

end

tA=7

tB=5

tC=12

tG=2

! Find longest path
" One loop at a time

! Prepare the loop
" Remove back edges
" Redirect to special

continue nodes

A

continue

G

tD=2

tF=8

 foo(x,i):
A: while(i < 100)

B: if (x > 5) then

C: x = x*2;
 else

D: x = x+2;
 end

E: if (x < 0) then

F: b[i] = a[i];
 end

G: i = i+1;

 end

tE=4

Path-Based Calculation
foo()

C

B

D

E

F

end

tA=7

tB=5

tC=12

tE=4

tG=2

! Longest path:
" A-B-C-E-F-G
" 7+5+12+4+8+2=

38 cycles

! Total time:
" 100 iterations
" 38 cycles per iteration
" Total: 3800 cycles

A

continue

G

tD=2

tF=8

Path-Based Calc

!  Infeasible path:
"  A-B-C-E-F-G
"  Ignore, look for next

 foo(x,i):
A: while(i < 100)

B: if (x > 5) then

C: x = x*2;
 else

D: x = x+2;
 end

E: if (x < 0) then

F: b[i] = a[i];
 end

G: i = i+1;

 end

C and F can
never execute

together

foo()

C

B

D

E

F

end

tA=7

tB=5

tC=12

tE=4

tG=2

A

continue

G

tD=2

tF=8

Path-Based Calc
foo()

C

B

D

E

F

end

tA=7

tB=5

tC=12

tE=4

tG=2

!  Infeasible path:
"  A-B-C-E-F-G
"  Ignore, look for next

! New longest path:
"  A-B-C-E-G
"  30 cycles

! Total time:
"  Total: 3000 cycles

A

continue

G

tD=2

tF=8

 foo(x,i):
A: while(i < 100)

B: if (x > 5) then

C: x = x*2;
 else

D: x = x+2;
 end

E: if (x < 0) then

F: b[i] = a[i];
 end

G: i = i+1;

 end

C and F can
never execute

together

! IPET = Implicit path
enumeration technique
" Execution paths not

explicitly represented

! Program model:
" Nodes and edges
" Timing info (tentity)

! Node times: basic blocks
! Edge times: overlap

" Execution count (Xentity)

foo()

C

A

B

D

E

F

G

end

tA=7

tD=2

tB=5

tC=12

tE=4

tF=8

tG=2

Example: IPET Calculation

XGA

XAB

XBC XBD

XDE

XEG

XCE

XEF

XFG

XfooA

XA

XB

XC XD

XE

XF

XG

Xfoo

Xend

! WCET=
max Σ(Xentity * tentity)
" Where each Xentity

satisfies constraints

! Constraints:
" Start & end condition
" Program structure
" Loop bounds
" Other flow information

foo()

C

A

B

D

E

F

G

end

IPET Calculation

XA

XB

XC XD

XE

XF

XG

Xfoo=1

Xend=1

XGA

XAB

XBC XBD

XDE

XEG

XCE

XEF

XFG

XfooA

XAB+XAend=XA

XE=XCE+XDE

XA=XfooA+XGA

XBC+XBD=XB

XA<=100

XC+XF<=XA

XA

XB

XC XD

XE

XF

XG

Xfoo

Xend

! Solution methods:
" Integer linear programming
" Constraint satisfaction

! Solution:
" Counts for

nodes and edges
" A WCET bound

foo()

C

A

B

D

E

F

G

end

IPET Calculation

XA=100

XB=100

XC=100 XD=0

XE=100

XF=0

XG=100

WCET=3000

Xfoo=1

Xend=1

Hybrid
methods

Hybrid methods
! Combines measurement and static analysis
! Methodology:

"  Partition code into smaller parts
"  Identify & generate instrumentation

points (ipoints) for code parts
"  Run program and generate ipoint traces
"  Derive time interval/distribution and flow info for

code parts based on ipoint traces
"  Use code part’s time interval/distribution and flow

info to create a program WCET estimate

! Basis for RapiTime WCET analysis tool!

int foo(int x) {

 write_to_port(’A’);
 int i = 0;

 while(i < x) {

 write_to_port(’B’);

 i++;

 }
}

Example: loop bound derivation

! 3 example traces:
" Run1: ABBBABBBBA
" Run2: ABBAAABBA
" Run3: ABBBBBBA

83

Instrumentation code

Instrumentation code

! Result (based on
provided traces):
" Lower loop bound: 0
" Upper loop bound: 6 Valid for an

entry of foo()

int foo(int x) {

 write_to_port(’A’,TIME);
 int i = 0;

 while(i < x) {

 i++;

 }

 write_to_port(’B’,TIME);
}

Example: function time derivation

! Example trace:
" <A,72>,<B,156>,

 <A,2001>,<B,2191>,
 <A,2555>,<B,2661>

84

Instrumentation
code extended

with TIME macro

! Result (based on
provided trace):
" Min time foo: 84

(156-72=84)
" Max time foo: 190

(2191-2001=190)
Realized as a short
assembler snippet

85

Notes: Hybrid methods
#  Testing and instrumentation already used in industry!

"  Known testing coverage criteria can be used
#  No hardware timing model needed!

"  Relatively easy to adapt analysis to new hardware targets

–  Is the resulting WCET estimate safe?
"  Have all costly software paths been executed?
"  Have all hardware effects been provoked/captured?

–  How much do instrumentation affect execution time?
"  Will timing behavior differ if they are removed?
"  Often constraints on where instrumentation points can be placed
"  Often limits on the amount of instrumentation points possible
"  Often limits on the bandwidth available for traces extraction

–  Are task switches/interrupts detected?
"  If not, derived timings may include them!

WCET
analysis

tools

87

WCET Analysis Tools
! Several more or less complete tools
! Commercial tools:

"  aiT from AbsInt
"  Bound-T from TidoRum
"  RapiTime from

Rapita Systems

! Research tools:
"  SWEET – Swedish

Execution Time tool
"  OTAWA (France)
"  TUBound (Austria)
"  Chronos (Singapore)

The Bound-T WCET tool
! A commercial WCET analysis tool

" Provided by Tidorum Ltd, www.tidorum.fi
" Decodes instructions, construct CFGs,

call-graphs, and calculates WCET from
the executable

! A variety of
CPUs supported:
" Including the

Renesas H8/3297
" Porting made as MSc

thesis project at MDH

89

WCET tool differences
! Used static and/or hybrid methods
! User interface

"  Graphical and/or textual
! Flow analysis performed

"  Manual annotations supported
! How the mapping problem is solved

"  Decoding binaries
"  Integrated with compiler

! Supported processors and compilers
! Low-level analysis performed

"  Type of hardware features handled
! Calculation method used

90

Supported CPUs (2008)
Tool Hardware platforms
aiT Motorola PowerPC MPC 555, 565, and 755, Motorola ColdFire MCF

5307, ARM7 TDMI, HCS12/STAR12, TMS320C33, C166/ST10,
Renesas M32C/85, Infineon TriCore 1.3

Bound-T Intel-8051, ADSP-21020, ATMEL ERC32, Renesas H8/300,
ATMEL AVR and ATmega, ARM7

RapiTime Motorola PowerPC family, HCS12 family, ARM, NECV850, MIPS3000
SWEET ARM9, NECV850E
Heptane Pentium1, StrongARM 1110, Renesas H8/300
Vienna M68000, M68360, Infineon C167, PowerPC, Pentium

Florida MicroSPARC I, Intel Pentium, StarCore SC100, Atmel Atmega, PISA/
MIPS

Chalmers PowerPC

91

Industrial usage
! Static/hybrid WCET analysis are today used in

real industrial settings
! Examples of industrial usage:

" Avionics: Airbus, aiT
" Automotive: Ford, aiT
" Avionics: BAE Systems, RapiTime
" Automotive: BMW, RapiTime
" Space systems: SSF, Bound-T

! However, most companies are still highly
unaware of the concepts of “WCET analysis”
and/or “schedulability analysis”

The SWEET
approach to

WCET analysis

The MDH WCET project
! Researching on static WCET analysis

" Developing the SWEET (SWEdish
Execution Time) analysis tool

! Research focus:
" Flow analysis
" Technology transfer to industry
"  International collaboration
" Parametrical WCET analysis
" Early-stage WCET analysis*
" WCET analysis for multi-core*

! Previous research focus:
" Low-level analysis
" Calculation

* = new project activities

Technology transfer to
industry (and academia)

! Evaluation of WCET analysis in industrial settings
"  Targeting both WCET tool providers and industrial users
"  Using state-of-the-art WCET analysis tools

! Applied as MSc thesis works:
"  Enea OSE, using SWEET & aiT
"  Volcano Communications, using aiT
"  Bound-T adaption to Lego Mindstorms and

Renesas H8/300. Used in MDH RT courses
"  CC-Systems, using aiT & measurement tools
"  Volvo CE using aiT & SWEET
" ….

! Articles and MSc thesis reports
available on the MRTC web

95

Flow analysis
!  Main focus of the MDH WCET analysis group

"  Motivated by our industrial case studies
!  We perform many types of advanced

program analyses:
"  Program slicing (dependency analysis)
"  Value analysis (abstract interpretation)
"  Abstract execution

 ...
!  Both loop bounds and

infeasible paths are derived
!  Analysis made on

ALF intermediate code
"  ~ “high level assembler”

A

C

x > 5

B

x < 3

D

 E Path A-C is
infeasible!

x = 1..10

x = 6..10

x = 1..4

x = 1..2
x = 3..8

Hardware

Where SWEET comes in…

C Source

WCET Low-level
analysis Calculation

SWEET

C Source

Object File

Object File

WCET
Estimate

Compiler

C Source

Flow
analysis

Input value
constraints

ALF

Compiler

Linker

Executable

Object File C Library

C Runtime

Other Lib

OS

LOW-SWEET

ALF

Object File

Executable Binary
reader

Slicing for flow analysis
!  Observation: some variables and statements

do not affect the execution flow of the program
= they will never be used to determine the outcome of conditions

!  Idea: remove variables and statements which are
guaranteed to not affect execution flow
"  Subsequent flow analyses should provide same result

but with shorter analysis time
!  Based on well-known program slicing techniques

"  Reduces up to 94%
of total program
size for some of
our benchmarks

1. a[0] = 42;
2. i = 1;
3. j = 5;
4. n = 2 * j;
5. while (i <= n) {
6. a[i] = i * i;
7. i = i + 2;
8. }

1.
2. i = 1;
3. j = 5;
4. n = 2 * j;
5. while (i <= n) {
6.
7. i = i + 2;
8. }

Value analysis
! Based on abstract interpretation (AI)

"  Calculates safe approximations of possible values
for variables at different program points

"  E.g. interval analysis gives i = [5..100] at p
"  E.g. congruence analysis gives i = 5 + 2* at p

! Builds upon well known
program analysis techniques
"  Used e.g. for checking array bound violations

! Requires abstract versions of all
ALF instructions
"  These abstract instructions work on abstract values

(representing set of concrete values) instead of normal ones

 i=5;
 max=100;
 while(i<=max) {
 // point p
 i=i+2;
 }

99

Loop bound analysis by AI
!  Observation: the number of possible program

states within a loop provides a loop bound
"  Assuming that the loop terminates

!  Loop bound = product of possible
values of variables within the loop

!  Example:
"  Interval analysis gives

i = [5..100] and max=[100..100] at p
"  Congruence analysis gives

 i = 5 + 2* and max=100+0* at p
"  The produce of possible values become:

size(i) * size(max) = ((100-5)/2) * (100-100)/1) = 45 * 1 = 45
which is an upper loop bound

!  Analysis bounds some but not all loops

 i=5;
 max=99;
 while(i<=max) {
 // point p
 i=i+2;
 }

Abstract Execution (AE)
! Derives loop bounds and infeasible paths
! Based on Abstract Interpretation (AI)

" AI gives safe (over)approximation of possible values
of each variable at different program points

" Each variable can hold a set of values

! “Executes” program using abstract values
" Not using traditional AI fixpoint calculation

! Result: an (over)approximation of the
possible execution paths

" All feasible paths will be included in the result
" Might potentially include some infeasible paths
"  Infeasible paths found are guaranteed to be infeasible

i = [1..4]

Loop bound analysis by AE

! Result includes all possible loop executions
! Three new abstract states generated at q

" Could be merged to one single abstract state:
 i=[10..11]

i = INPUT;

// i = [1..4]
while(i < 10) {
 // point p
 ...
 i = i + 2;
}
// point q

Loop
iteration

Abstract
state at p

Abstract
state at q

1

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴
2 i = [3..6] ┴

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴
2 i = [3..6] ┴
3 i = [5..8] ┴

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴
2 i = [3..6] ┴
3 i = [5..8] ┴
4 i = [7..9] i = [10..10]

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴
2 i = [3..6] ┴
3 i = [5..8] ┴
4 i = [7..9] i = [10..10]
5 i = [9..9] i = [10..11]

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴
2 i = [3..6] ┴
3 i = [5..8] ┴
4 i = [7..9] i = [10..10]
5 i = [9..9] i = [10..11]
6 ┴ i = [11..11]

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴
2 i = [3..6] ┴
3 i = [5..8] ┴
4 i = [7..9] i = [10..10]
5 i = [9..9] i = [10..11]
6 ┴ i = [11..11]

Result
Min iterations: 3
Max iterations: 5

[5..8]
[7..9]
[9..9]

[10..10]
[10..11]
[11..11]

[1..4]
[3..6]

Multi-core
+ WCET
analysis?

Trends in Embedded HW
! Trend: Large variety of ES HW platforms

"  Not just one main processor type as for PCs
"  Many different HW configurations (memories, devices, …)
"  Challenge: How to make WCET analysis portable between

platforms?

! Trend: Increasingly complex HW
features to boost performance
"  Taken from the high-performance CPUs
"  Pipelines, caches, branch predictors,

superscalar, out-of-order, …
"  Challenge: How to create safe and tight HW timing models?

! Trend: Multi-core architectures

Multi-core architectures
!  Several (simple) CPUs on one chip

"  Increased performance & lower power
"  “SoC”: System-on-a-Chip possible

!  Explicit parallelism
"  Not hidden as in superscalar architectures

!  Likely that CPUs will be less complex
than current high-end processors
"  Good for WCET analysis!

!  However, risk for more shared
resources: buses, memories, …
"  Bad for WCET analysis!
"  Unrelated threads on other cores

might use shared resources
!  Analysis of multi-core is simplified if predictable sharing

of common resources is somehow enforced

Multicore chip

core

L1 cache

core

L1 cache

core

L1 cache

L2 cache

RAM

Devices

etc. Network

Timer Serial

Example: shared bus
!  Example, dual core processor with private L1

caches and shared memory bus for all cores
"  Each core runs its own code and task

!  Problem:
"  Whenever t1 needs something from

memory it may or may not collide with
t2’s accesses on the memory bus

"  Depends on what t1 and t2 accesses
and when they accesses it

"  Large parallel state space to explore

!  Possible solution:
"  Use deterministic (but potentially pessi-

mistic) bus schedule, like TDMA
"  Worst-case memory bus delay can then

be bounded

int t1_code {
 if(...) {
 ...
 }
 ...
}

int t2_code {
 ...
 while(...) {
 ...
 }
}

TDMA bus
schedule

Example: shared memory
!  ES often programmed using shared memory model

"  t1 and t2 may communicate/synchronize using shared variables

!  Problem:
"  When t1 writes g, memory block of g is loaded into core1’s d-cache
"  Similarly, when t2’s writes g, memory

block of g moved to t2’s d-cache (and
t1’s block is invalidated)

!  May give a large overhead
"  Much time can be spent moving memory

blocks in between caches (ping-pong)
"  Hidden from programmer - HW makes

sure that cache/memory content is ok
"  False sharing – when tasks accesses

different variables, but variables are
located in same memory block

!  Possible solutions:
"  Constrain task’s accesses to shared

memory (e.g. single-shot task model)

106

int t1_code {
 if(...) {
 ...
 g=5;
 }
 ...;
}

int t2_code {
 ...
 while(...) {
 ...
 g++;
 }
}

Example: multithreading
!  Common on high-order multi-cores and GPUs
!  Core run multiple threads of execution in parallel

"  Parts of core that store state of threads (registers, PC, ..) replicated
"  Core’s execution units and caches shared between threads

!  Benefits
"  Hides latency – when one thread

stalls another may execute instead
"  Better utilization of core’s computing

resources – one thread usually only
use a few of them at the same time

!  Problems
"  Hard to get timing predictability
"  Instructions executing and cache

content depends dynamically on
state of threads, scheduler, etc.

107

int t1_code {
...;
}

int t3_code {
...;
} int t2_code {

...;
}

Trends in Embedded SW

! Traditionally: embedded SW written in C
and assembler, close to hardware

! Trend: size of embedded SW increases
" SW now clearly dominates ES development cost
" Hardware used to dominate

! Trend: more ES development by high-level
programming languages and tools
" Object-oriented programming languages
" Model-based tools
" Component-based tools

Increase in embedded SW size
! More and more functionality required

"  Most easily realized in software

! Software gets more and more complex
"  Harder to identify the timing critical part of the code
"  Source code not always available for all parts of the

system, e.g. for SW developed by subcontractors

! Challenges for WCET analysis:
"  Scaling of WCET analysis methods to larger code sizes

! Better visualization of results (where is the time spent?)
"  Better adaptation to the SW development process

! Today’s WCET analysis works on the final executable
! Challenge: how to provide reasonable precise WCET

estimates at early development stages

Higher-level prog. languages
! Typically object-oriented: C++, Java, C#, …
! Challenges for WCET analysis:

" Higher use of dynamic data structures
! In traditional ES programming all data is statically

allocated during compile time
" Dynamic code, e.g., calls to virtual methods

! Hard to analyze statically (actual method called
may not be known until run-time)

" Dynamic middleware:
! Run-time system with GC
! Virtual machines with JIT compilation

Model-based design
!  More embedded system code generated by

higher-level modeling and design tools
"  RT-UML, Ascet, Targetlink, Scade, ...

!  The resulting code structure
depends on the code generator
"  Often simpler than handwritten code

!  Possible to integrate such tools
with WCET analysis tools
"  The analysis can be automated
"  E.g., loop bounds can be provided

directly by the modeling tool

!  Hard to provide reliable timing on
modeling level

model

...
label rerun:
if(flag1 || flag2) ...
else
 goto rerun;
...

generated
code

….´
10010101001110101100101001
10010101001110101100101001
10100101010101001010010100
10010101010101010100101010
....

executable

Component-based design
! Very trendy within software engineering
! General idea:

" Package software into reusable
components

" Build systems out of prefabricated
components, which are “glued together”

! WCET analysis challenges:
" How to reuse WCET analysis results

when some settings have changed?
" How to analyze SW components

when not all information is available?
" Are WCET analysis results composable?

Compiler interaction
!  Today – commercial WCET analysis tools

analyses binaries
!  Another possibility – interaction with the compiler

"  Easier to identify data objects and to understand
what the program is intended to do

!  There exists many compilers for
embedded systems
"  Very fragmented market
"  Each specialized on a few particular targets
"  Targeting code size and execution speed

!  Integration with WCET analysis tools
opens new possibilities:
"  Compile for timing predictability
"  Compile for small WCET

114

The End!

For more information:
www.mrtc.mdh.se/projects/wcet

