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C
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What C are we talking about? 

! ”Computation time” - a key component 
in the analysis of real-time systems 

! You have seen it in formulas such as: 

Ri = Ci + ∑ "Ri / Tj# Cj 
 j∈hp(i)         

Worst-Case 
Response Time Period 

Where do these C values come from? 

Worst-Case 
Execution Time 

Program timing is not trivial! 

Simpler questions 
!  What is the program 

doing? 
!  Will it always do the 

same thing? 
!  How important is  

the result? 
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int f(int x) { 
   return 2 * x; 

} 

Harder questions 
 

!  What is the execution 
time of the program?  

!  Will it always take the 
same time to execute? 

!  How important is 
execution time?  

Program timing 
! Most computer programs have varying 

execution time 
"  Due to input values  
"  Due to software characteristics 
"  Due to hardware characteristics 

! Example: some timed program runs 
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0 execution time 
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Most runs have 
similar execution time  

Some take much 
longer time (why?)  

Is this the longest 
execution time... 

... or can we get 
even longer ones?  

safe  
upper 
timing 

bounds 

possible 
execution times 

WCET - definition 
! Worst-Case Execution Time = WCET 

"  The longest calculation time possible 
"  For one program/task when run in isolation 
"  Other interesting measures: BCET, ACET 

! The goal of a WCET analysis is to derive  
a safe upper bound on a program’s WCET  

time 

safe  
lower 
timing 

bounds 

0 

 BCET  WCET 



Presentation outline 
! Embedded system fundamentals 
! WCET analysis 

"  Measurements  
"  Static analysis  
"  Flow analysis, low-level analysis, and calculation 
"  Hybrid approaches 

! WCET analysis tools 
! The SWEET approach to WCET analysis 

!  (Multi-core + WCET analysis?) 
! WCET analysis demo (SWEET) 

Embedded 
systems 

fundamentals 

Embedded computers 
!  An integrated part of a larger system 

"  Example 1: A microwave oven contains at  
least one embedded processor  

"  Example 2: A modern car can contain more  
than 100 embedded processors 

!  Interacts with the user,  
the environment, and  
with other computers  
"  Often limited or  

no user interface 
"  Often with  

timing constraints 

 

input result 

Embedded systems everywhere 

! Today, all advanced 
products contain  
embedded computers! 
"  Our society depends on  

that they function correctly 
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Embedded systems software 

! Amount of software can vary from  
extremely small to very large 
"  Gives characteristics to the product 

! Often developed with target  
hardware in mind 
"  Often limited resources (memory / speed) 
"  Often direct accesses to different HW devices 
"  Not always easily portable to other HW 

! Many different programming languages 
"  C still dominates, but often special purpose languages  

! Many different software development tools  
"  Not just GCC and/or Microsoft Visual Studio 

Embedded system hardware 
! Huge variety of embedded  

system processors 
"  Not just one main processor type as for PCs  
"  Additionally, same CPU can be used with various  

hardware configurations (memories, devices, …)  

! The hardware is often tailored  
specifically to the application  
"  E.g., using a DSP processor for signal  

processing in a mobile telephone 

! Cross-platform development 
"  E.g., develop on PC and download  

final application to target HW  
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"Desktop"
2%

"Embedded"
98%

Some interesting figures 
!  4 billion embedded processors sold in 2008 

"  Global market worth €60 billion 
"  Predicted annual growth rate of 14%  
"  Forecasts predict more than 40 billion embedded devices in 2020 

!  Embedded processors clearly dominate yearly 
production  

Source: http://www.artemis-ju.eu/embedded_systems 

Real-time systems 
! Computer systems where the timely 

behavior is a central part of the function 
" Containing one or more embedded computers 
" Both soft- and hard real-time, or a mixture… 

Timing of radio 
communication, 

speech 
recognition,… 

Timing of music 
playing from MP3 file 

Timing of radio 
communication, motor 

control, rudder and 
flaps control,… 

Timing of network 
communication, motor 
control, ABS brakes, 

anti-slip control,… 

Uses of reliable WCET bounds 

! Hard real-time systems  
"  WCET needed to guarantee behavior 

! Real-time scheduling 
"  Creating and verifying schedules 
"  Large part of RT research assume  

the existence of reliable WCET bounds 

! Soft real-time systems 
"  WCET useful for system understanding 

! Program tuning 
"  Critical loops and paths 

! Interrupt latency checking 

WCET 
analysis 

Obtaining WCET bounds 

! Measurement 
" Industrial practice 

 

! Static analysis  
" Research front 

 

Measuring for the WCET 

! Methodology: 
" Determine ”worst-case 

input” or run as many 
inputs as possible 

" Execute and measure 
the time 

" Add a safety margin 
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Measurement issues 1 
! What is the worst-case input? 

"  In general, the problem of determining the worst case input 
value combination to an arbitrary program is very hard. 

! Alternative: run all inputs? 
"  Typically not possible, since the number of input 

combinations typically is huge. 
"  For example: 10 variables of size 32 bits => number of 

necessary measurement runs = 4 294 967 29510 
"  Also keep in mind that the program state is a part of the input 

!  In practice: run as many inputs as possible 
"  There are some ideas how to test extreme cases and corners 
"  Has the worst-case path really been taken? No guarantee! 
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Measurement issues 2 
! How to measure the execution time? 

"  Option 1: SW methods 
! Operating system clocks 
! Simulators 
! High-water marking 

"  Option 2: HW + SW methods 
! Add instrumentation code  
! Use oscilloscopes, logic analyzers, emulators 

logic analyzers or debug support 
! The instrumentation may affect the  

timing 
!  Instrumentation code is often left in  

shipped code 
! How much instrumention output  

can be handled?  LEDs 

Buzzer 
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SW measurement methods 
! Operating system clocks 

"  Commands such as time,  date and clock 
"  Note that all OS-based solutions require  

precise HW timing facilities (and an OS) 
! Cycle-level simulators 

"  Software simulating CPU 
"  Correctness vs. hardware? 

! High-water marking 
"  Keep system running 
"  Record maximum time  

observed for task 
"  Keep in shipping systems,  

read at service intervals 
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Using an oscilloscope 
! Common equipment for HW debugging  

"  Used to examine electrical output  
signals of HW  

! Observes the voltage or signal 
waveform on a particular pin 

"  Usually only two to four inputs 
 

! To measure time spent in a routine:  
1.  Set I/O pin high when entering routine  
2.  Set the same I/O pin low before exiting  
3.  Oscilloscope measures the amount of  

time that the I/O pin is high  
4.  This is the time spent in the routine 
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Using a logic analyzer 
! Equipment designed for 

troubleshooting digital 
hardware 

! Have dozens or even 
hundreds of inputs 
"  Each one keeping track on 

whether the electrical signal 
it is attached to is currently 
at logic level 1 or 0 

"  Result can be displayed 
against a timeline   

"  Can be programmed to start 
capturing data at particular 
input patterns 

Target  
board 

HW Debugger  
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HW measurement tools 
!  In-circuit emulators (ICE) 

" Special CPU version revealing internals 
! High visibility & bandwidth 
! High cost + supportive HW required 

! Processors with debug support 
" Designed into processor 

! Use a few dedicated processor pins 
" Using standardized interfaces 

! Nexus debug interfaces, JTAG,   
Embedded Trace Macrocell, …  

" Supportive SW & HW required 
" Common on modern chip 



Fundamental problems when 
using measurements 

! Measured time never exceeds WCET 

How do we know that we catched 
the WCET? 
" A safety margin must be added, but how 

much is enough? 

safe  
upper 
timing 

bounds 

possible 
execution times 

time 

safe  
lower 
timing 

bounds 

0 

 BCET  WCET 

Only this measurement 
is safe (= WCET)! 

Measurement will result 
in a value ≤ WCET 

Static 
WCET 

analysis 

Static WCET analysis 
! Do not run the program – analyze it! 

"  Using models based on the static properties of the 
software and the hardware 

! Guaranteed safe WCET bounds 
"  Provided all models, input data and analysis  

methods are correct 
! Trying to be as tight as possible 

safe  
upper 
timing 

bounds 

possible 
execution times 

time 

safe  
lower 
timing 

bounds 

0 

 BCET  WCET 

All derived 
bounds will 
be ≥ WCET 

foo(x,i):  

  while(i < 100)     

     if (x > 5) then 

       x = x*2; 

     else 

       x = x+2; 

     end 

     if (x < 0) then 

       b[i] = a[i]; 

     end 

     i = i+1; 

  end 

Again: Causes of  
Execution Time Variation 

! Execution characteristics  
of the software  
" A program can often execute  

in many different ways 
"  Input data dependencies 
" Application characteristics 

! Timing characteristics  
of the hardware  
" Clock frequency 
" CPU characteristics 
" Memories used 
" … 

Analysis

WCET analysis phases 

Reality

Compiler

Object 
Code

Target 
Hardware

program

Low level
analysis

Calculation

Flow 
analysis

1. Flow analysis  
" Bound the number of times 

different program parts may 
be executed (mostly SW analysis) 

2. Low-level analysis 
" Bound the execution time  

of different program parts 
(combined SW & HW analysis) 

3. Calculation 
" Combine flow- and low-level 

analysis results to derive an 
upper WCET bound 

    

Actual  
WCET

WCET 
bound

30 

Flow 
analysis 



31 

Flow Analysis 
! Provides bounds on the number 

of times different program parts 
may be executed 
" Valid for all possible executions 

! Examples of provided info: 
" Bounds of loop iterations 
" Bounds on recursion depth 
"  Infeasible paths 

!  Info provided by:  
" Static program analysis 
" Manual annotations 

Flow  
analysis 

Low level 
analysis 

Calculation 

Program 

WCET 
Estimate 

The control-flow graph 
    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 

Flows as 
edges 

foo()

C

A

B

D

E

F

G

end

Each block 
will run as a 

unit 

Example program 

Flow info characteristics 

Basic finiteness 

Statically allowed 

Actual feasible 
paths 

   Loop bound: 100 

               #F < 10 

Control flow graph  

Structurally possible 
 executions (infinite) 

Relation between possible  
executions and flow info 

WCET found here =  
desired result

    foo(x,i):  
A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 
       end 

G:     i = i+1; 

     end 

foo()

C

B

D

E

F

G

end

A

WCET found here = 
 overestimation 

Example: Loop bounds 
! Loop bound:  

"  Depends on possible values 
of input variable i 
! E.g. if 1 ≤ i ≤ 10 holds for input 

value i, then loop bound is 100 
"  In general, a very difficult 

problem 
"  However, solvable for many 

types of loops 

! Requirement for basic 
finiteness (a WCET) 
"  All loops must be  

upper bound 

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 

Example: Infeasible path 

! Infeasible path: 
" Path A-B-C-E-F-G  

can not be executed 
since C implies ¬F 

"  If (x > 5) then it is not 
possible that (x*2) < 0 

! Limits statically 
allowed executions 
" Might tighten the 

WCET estimate 

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i=i+1; 

     end 
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Example: Triangular Loop 

! Two loops: 
" Loop A bound: 100  
" Local B bound: 100 

! Block C:  
" By loop bounds: 

100 * 100 = 10 000 
" But actually: 

100+...+1 = 5 050 
! Limits statically 

allowed executions 
" Might tighten the 

WCET estimate 

   triangle(a,b):  
A:   loop(i=1..100) 
B:    loop(j=i..100) 
C:       a[i,j]=...  
       end loop 
     end loop 



int$i=0;$
...$$
while(i<100)$
{$
$$...$$
$$i++;$
}$
...$

The mapping problem 
!  Flow analysis easier on source code level  

"  Semantics of code clearer 
"  Easier for programmer/tool to derive flow info 

!  Low-level analysis requires binary code 
"  The code executed by the processor 

!  Question: How to safely map flow source code level 
flow information to binary code? 

...$
0111111010010111$
0110010100101001$
1001010100111010$
1001010011111110$
1010010101010100$
1001010101010101$
...$

Loop bound 
(header): 101 

Where is 
the loop?  

Source code Executable  

The mapping problem (cont) 
!  Embedded compilers often do a lot of code optimizations 

"  Important to fit code and data into limited memory resources 
!  Optimizations may significantly change code (and data) layout 

"  After optimizations flow info may no longer be valid 
!  Solutions:  

"  Use special compiler also mapping flow info (not common)  
"  Use compiler debug info for mapping (only works with little/no optimizations) 
"  Perform flow analysis on binaries (most common) 
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$int$i=0;$
$...$$
$while(i<100)${$
$$$...$$
$$$i++;$
$}$
$...$

$int$i=0;$
$...$$
$do${$
$$$...$$
$$$i++;$
$}$while(i<100)$
$...$

Flow analysis:  
Loop condition  
taken 101 times 

Compiler: i=0  
always holds at  
first execution  

of loop condition  

Loop condition  
taken 100 times 

Before optimization After optimization 

Executable 

1000110000011110 
1000110000100000 
1010110000100000 
1010110000011110 
1010110000100011 
1010111100011001 

Linker 

Object File 

Object File 

Object File 

twice: 
   mov    ip, sp 
   stmfd  sp!, {fp,ip,lr,pc} 
   sub    fp, ip, #4 
   sub    sp, sp, #8 
   str    r0, [fp, #-16] 
   ldr    r3, [fp, #-16] 
   mov    r3, r3, asl #1 
   str    r3, [fp, #-20] 
   ldr    r3, [fp, #-20] 
   mov    r0, r3 
   ldmea  fp, {fp,sp,pc} 

Compiler 

Embedded SW Tool Chain 

C Source 

C Source 

C Library 

C Runtime 

Start-up 

OS 
C Source 

WCET 

int twice(int a) { 
  int temp; 
  temp = 2 * a; 
  return temp; 
} 

Affects  
timing 

Affects  
timing Affects  

timing Affects  
timing Affects  

timing 

Affects  
timing 

Affects  
timing 
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The SW building tools 
! The compiler: 

"  Translates an source code file to an object code file 
! Only translates one source code file at the time 

"  Often makes some type of code optimizations  
! Increase execution speed, reduce memory size, … 
! Different optimizations give different object code layouts 

! The linker: 
"  Combines several object code files into one executable 

! Places code, global data, stack, etc in different memory parts 
! Resolves function calls and jumps between object files 

"  Can also perform some code transformations 

! Both tools may affect the program timing! 
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Example: compiling & linking 
/****************** 
 * File: main.c 
 *****************/  
int foo();  
 
 

int main() { 
  return 1 + foo(); 
} 

/****************** 
 * File: foo.c 
 *****************/  
 

int foo() { 
 return 1; 

} 

Contains object  
code for main.c 

Object code contains an 
unresolved call to foo  

Compiler main.o 

Contains object  
code for foo.c 

Compiler foo.o 

The main.o and 
foo.o object code 
files are combined 

The call to foo 
in main has 

been resolved 

Linker a.exe 
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Common additional files 
! C Runtime code: 

"  Whatever needed but not supported by the HW 
! 32-bit arithmetic on a 16-bit machine 
! Floating-point arithmetic  
! Complex operations (e.g., modulo, variable-length shifts) 

"  Comes with the compiler  
"  May have a large footprint 

! Bigger for simpler machines 
! Tens of bytes of data and tens of kilobytes of code   
 
 

! OS code:  
"  In many ES the OS code is linked together with the rest  

of the object code files to form a single binary image  



43 

Common additional files 

!  Startup code:  
"  A small piece of assembly code that prepares the way for 

the execution of software written in a high-level language 
! For example, setting up the system stack 

"  Many ES compilers provide a file named  
startup.asm,  crt0.s,  … holding startup code 

!  C Library code: 
"  A full ANSI-C compiler must provide code that implements  

all ANSI-C functionality  
! E.g., functions such as printf, memmove, strcpy 

"  Many ES compilers only support subset of ANSI-C 
"  Comes with the compiler (often non-standard) 

Low-level 
analysis 

Low-Level Analysis 
! Determine execution time bounds 

for program parts 
" Focus of most WCET-related research 

! Using a model of the target HW 
" The model does not need to model all 

HW details 
" However, it should safely account for 

all possible HW timing effects 

! Works on the binary, linked code 
" The executable program 

Flow  
analysis 

Program 

Low level 
analysis 

Calculation 

WCET 
Estimate 

Some HW model details 
!  Much effort required to safely model CPU internals 

"  Pipelines, branch predictors, superscalar, out-of-order, … 
!  Much effort to safely model memories 

"  Cache memories must be modelled in detail 
"  Other types of memories may also affect timing 

!  For complex CPUs many features must be  
analyzed together 
"  Timing of instructions gets history dependant 

!  Developing a safe HW timing model troublesome 
"  May take many months (or even years) 
"  All things affecting timing must be accounted for  

Hardware time variability   
!  Simpler 4-, 8- & 16-bit processors (H8300, 8051, …): 

"  Instructions might have varying execution time due to 
argument values 

"  Varying data access time due to different memory areas 
"  Analysis rather simple, timing fetched from HW manual  

!  Simpler 16- & 32-bit processors, with a (scalar) pipe-
line and maybe a cache (ARM7, ARM9, V850E, …): 
"  Instruction timing dependent on previously 

executed instructions and accessed data:  
! State of pipeline and cache  

"  Varying access times due to cache hits and misses 
"  Varying pipeline overlap between instructions 
"  Hardware features can be analyzed in isolation 

Hardware time variability 
!  Advanced 32- & 64-bit processors (PowerPC 7xx, 

Pentium, UltraSPARC, ARM11, …): 
"  Many performance enhancing features affect timing 

! Pipelines, out-of-order exec, branch pred., caches, 
speculative exec.   

! Instruction timing gets very history dependent     
"  Some processors suffer from timing anomalies 

! E.g., a cache miss might give shorter overall  
program execution time than a cache hit 

"  Features and their timing interact  
! Most features must be analyzed together  

"  Hard to create a correct and safe  
hardware timing model! 

!  Multi-cores - discussed later 
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Example: CPU pipelines 
! Observation: Most instructions go through 

same stages in the CPU 
! Example: Classic RISC 5-stage pipeline 

IF ID EX MEM WB 

Instruction fetch (IF) 
 Get the next instruction 
from memory to process 

(its address is held by PC)  

Instruction decode 
Determine operation to be 

performed (i.e., extract 
opcode and arguments) 

Execute 
Perform the actual 

operation (e.g, an add) 

Memory access 
Load/store values 
from/to memory if 

needed  

Write back 
Write the result into 
the target register   

50 

CPU pipelines 
!  Idea: Overlap the CPU stages of the instruct-

ions to achieve speed-up 
! No pipelining: 

"  Next instruction  
cannot start before  
previous one has  
finished all its stages 

! Pipelining: 
"  In principle: speedup = pipeline length 
"  However, often dependencies 

between instructions 

IF 
ID 
EX 

MEM 
WB 

1 2 3 5 6 4 

IF 
ID 
EX 

MEM 
WB 

1 2 3 5 6 7 4 8 9 10 

I1. add $r0, $r1, $r2 
I2. sub $r3, $r0, $r4 

Example: RAW 
dependency 

I2 depends on 
completion of 
data write of I1 

May cause  
pipeline stall 
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Pipeline Variants 
! None: Simple CPUs (68HC11, 8051, …) 
! Scalar: Single pipeline (ARM7,ARM9,V850, …) 
! VLIW: Multiple pipelines, static, compiler 

scheduled (DSPs, Itanium, Crusoe, …) 
! Superscalar: Multiple pipelines, out-of-order  

(PowerPC 7xx, Pentium, UltraSPARC, ...) 

IF 
ID 
EX 

MEM 
WB 

1 2 3 5 6 7 4 8 9 10 11 Blue instruction 
occupies EX stage 
for 2 extra cycles 

This stalls both 
subsequent 
instructions 

Example: No Pipeline 
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    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 

 

(7 cycles) 
(5 c) 
(12 c) 
 
(2 c) 
 
(4 c) 
(8 c) 
 
(2 c) 
 

" Constant time 
for each block  
in the code 

" Object code  
not shown 

 

Example: No pipeline 
foo()

C

A

B

D

E

F

G

end

tA=7 

tD=2 

tB=5 

tC=12 

tE=4 

tF=8 

tG=2 

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 

A

B

Example: Simple Pipeline 

tA = 7

B

IF
EXEX
M
F

1 2 3 4 5
tB = 5

IF
EXEX
M
F

1 2 3 4 5 6 7

A IF
EXEX
M
F

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9
IF
EXEX
M
F

10

tAB = 10 

 

δAB = 10 - (7 + 5) = -2 

δAB = -2
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Example: Pipeline result 

tA=7 

tD=2 

tB=5 

tC=12 

tE=4 

tF=8 

tG=2 

δAB=-2 

δBC=-2 δBD=-1 

δDE=-2 δCE=-1 

δEF=-2 

δFG=-1 

δEG=-1 

δGA=-1 

foo()

C

A

B

D

E

F

G

end

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 
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IF
EX
M
F

IF
EX
M
F

Pipeline Interactions 

IF
EX
M
F

IF
EX
M
FIF

EX
M
F

IF
EX
M
F

IF
EX
M
F

IF
EX
M
F

Pairwise overlap: speed-up 

Interaction across more than 
two blocks also possible! 
Can be both speed-up or slow-down  

 
Larger  
storage  
capacity 

 

The memory hierarchy 

Main memory

 Cache 
memory

Caches store 
frequently used 

instructions and data 
(for faster access) 

Main memory has larger 
storage capacity but 
much longer access  

time than caches 

 

Faster 
access  

time 

CPU
Caches increase 

average speed, but 
give more variable 

execution time 

Many variants exists:  
instruction caches, 

data caches,  
unified caches,  

cache hierarchies, …  

The CPU executes 
instructions. It also needs 
to access data to perform 

operations upon 
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Example: Cache analysis 
fib: 
  mov  #1, r5 
  mov  #0, r6 
  mov  #2, r7 
  br  fib_0 

fib_1: 
  mov  r5,r8 
  add  r6,r5 
  mov  r8,r6 
  add  #1,r7 

fib_0: 
  cmp  r7,r1 
  bge  fib_1 

fib_2: 
  mov  r5,r1 
  jmp  [r31] 

! Performed on the 
object code 

! Only direct-mapped 
instruction cache in 
this example 

What instructions will 
cause cache misses? 

Cache misses takes 
much more time 
than cache hits! 

Main memory

 Cache 
memory

 CPU
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Example: Cache analysis 

fib: 
  mov  #1, r5  2  1000 
  mov  #0, r6  2  1002 
  mov  #2, r7  2  1004 
  br  fib_0   2  1006 

fib_1: 
  mov  r5,r8   2  1008 
  add  r6,r5   2  1010 
  mov  r8,r6   2  1012 
  add  #1,r7   2  1014 

fib_0: 
  cmp  r7,r1   2  1016 
  bge  fib_1   2  1018 

fib_2:  
  mov  r5,r1   2  1020 
  jmp  [r31]   2  1022 

Starting 
address 

Size of 
instruction 

! Information 
needed for 
instruction 
cache 
analysis 
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Example: Cache analysis 
fib: 
  mov  #1, r5  2  1000 
  mov  #0, r6  2  1002 
  mov  #2, r7  2  1004 
  br  fib_0   2  1006 

fib_1: 
  mov  r5,r8   2  1008 
  add  r6,r5   2  1010 
  mov  r8,r6   2  1012 
  add  #1,r7   2  1014 

fib_0: 
  cmp  r7,r1   2  1016 
  bge  fib_1   2  1018 

fib_2:  
  mov  r5,r1   2  1020 
  jmp  [r31]   2  1022 

! Mapping to 
instruction 
cache 
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Example: Cache analysis 
fib: 
  mov  #1, r5 
  mov  #0, r6 
  mov  #2, r7 
  br  fib_0 

fib_1: 
  mov  r5,r8 
  add  r6,r5 
  mov  r8,r6 
  add  #1,r7 

fib_0: 
  cmp  r7,r1 
  bge  fib_1 

fib_2:  
  mov  r5,r1 
  jmp  [r31] 

miss 
hit 
hit 
hit 

miss 
hit 

miss 
hit 
hit 
hit 
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Example: Cache analysis 
fib: 
  mov  #1, r5 
  mov  #0, r6 
  mov  #2, r7 
  br  fib_0 

fib_1: 
  mov  r5,r8 
  add  r6,r5 
  mov  r8,r6 
  add  #1,r7 

fib_0: 
  cmp  r7,r1 
  bge  fib_1 

fib_2:  
  mov  r5,r1 
  jmp  [r31] 

miss 
hit 
hit 
hit 

miss 
hit 

miss 
hit 
hit 
hit 

hit 
hit 

hit 
hit 
hit 
hit 

Remaining 
iterations 

First 
iteration of 

the loop 

hit 
hit 

63 

1032: cmp r6,r1  

1034: blt foo_5 

Cache & Pipeline analysis 

 foo_0:  

foo_1:  

foo_2:  

foo_3:  

foo_5:  

 foo: 

foo_4:  

info 

info 

info 

info 

info 

info 

info 

! Pipeline analysis might  
take cache analysis  
results as input 
" Instructions gets annotated  

with cache hit/miss 
" These misses/hits  

affect pipeline timing 
! Complex HW requires  

integrated cache &  
pipeline analysis 

1020:icache miss 

1022:icache hit 

Analysis of complex CPUs 
!  Example: Out-of-order processor 

"  Instructions may executes in  
parallel in functional units 

"  Functional units often replicated 
"  Dynamic scheduling of  

instructions 
"  Do not need to follow  

issuing order  

!  Very difficult analysis  
"  Track all possible pipeline  

states, iterate until fixed point 
"  Require integrated pipeline/icache 

/dcache/branch-prediction analysis 

!  Been done for PowerPC 755 
"  Up to 1000 states per instruction! 

RS holds pending 
instructions 

If all operands  
and the FU are  
ready instr. in 
RS is put in FU 

FUs and CU 
forward results 
back to RSs 
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Low-level analysis correctness? 

! Abstract model of the hardware is used 
! Modern hardware often very complex 

" Combines many features  
" Pipelining, caches, branch prediction,  

out-of-order... 
! Have all effects been  

accounted for? 
" Manufactures keep hardware  

internals secret 
" Bugs in hardware manuals  
" Bugs relative hardware specifications 

?
Calculation 



Calculation 
! Derive an upper bound on the 

program’s WCET 
" Given flow and timing information 

! Several approaches used: 
" Tree-based 
" Path-based 
" Constraint-based (IPET) 

! Properties of approaches: 
" Flow information handled 
" Object code structure allowed 
" Modeling of hardware timing 
" Solution complexity 

Flow 
analysis

Program

Low level
analysis

Estimate  
calculation

WCET 
Estimate

Example: Combined flow analysis 
and low-level analysis result 

    foo(x,i):  

A:   while(i < 100)     
B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 
E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 

foo()

C

A

B

D

E

F

G

end

tA=7 

tD=2 

tB=5 

tC=12 

tE=4 

tF=8 

tG=2 

   ”Loop bound: 100” 

”C and F can’t be 
taken together” 
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Tree-Based Calculation 

loop  

   

foo 

  

header 

   if(x>5) 

   
x=x/2 

   x=x+2 

   

if(x<0) 

   
b[i]=a[i] 

   

bar(i) 

   

! Use syntax-tree 
of program 

! Traverse tree 
bottom-up 

    foo(x):  
A:   loop(i=1..100)     

B:     if (x > 5) then 

C:       x = x*2 
       else 

D:       x = x+2 
       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 
       end 

G:     bar (i) 

     end loop 
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Tree-Based Calculation 

loop : 100 

()  

foo 

() 

header 

(7)  if(x>5) 

(5)  
x=x/2 

(12)  x=x+2 

(2)  

if(x<0) 

(4)  
b[i]=a[i] 

(8)  

bar(i) 

(20)  

! Use constant 
time for nodes 

! Leaf nodes have 
definite time 

! Rules for 
internals 

    foo(x):  
A:   loop(i=1..100)     

B:     if (x > 5) then 

C:       x = x*2 
       else 

D:       x = x+2 
       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 
       end 

G:     bar (i) 

     end loop 

 
(7 c) 
(5 c) 
(12 c) 
 
(2 c) 
 
(4 c) 
(8 c) 
 
(20 c) 
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! For a decision 
statement: max 
of children 

! Add time for 
decision 
itself 

Tree-Based: IF statement 

loop : 100 

()  

foo 

() 

header 

(7)  if(x>5) 

(5) ∑ 17 

x=x/2 

(12)  x=x+2 

(2)  

if(x<0) 

(4)  ∑ 12 

b[i]=a[i] 

(8)  

bar(i) 

(20)  

    foo(x):  
A:   loop(i=1..100)     

B:     if (x > 5) then 

C:       x = x*2 
       else 

D:       x = x+2 
       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 
       end 

G:     bar (i) 

     end loop 
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Tree-Based: LOOP 
! Loop: sum the 

children 
! Multiply by loop 

bound 
loop : 100 

∑ 56 * 100  

foo 

() 

header 

(7)  if(x>5) 

(5) ∑ 17 

x=x/2 

(12)  x=x+2 

(2)  

if(x<0) 

(4) ∑ 12 

b[i]=a[i] 

(8)  

bar(i) 

(20)  

    foo(x):  
A:   loop(i=1..100)     

B:     if (x > 5) then 

C:       x = x*2 
       else 

D:       x = x+2 
       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 
       end 

G:     bar (i) 

     end loop 
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Tree-Based: Final result 
! The function 

foo() will take 
5600 cycles in 
the worst case 

loop : 100 

∑ 56 * 100  

foo 

∑ 5600 

header 

(7)  if(x>5) 

(5) ∑ 17 

x=x/2 

(12)  x=x+2 

(2)  

if(x<0) 

(4) ∑ 12 

b[i]=a[i] 

(8)  

bar(i) 

(20)  

    foo(x):  
A:   loop(i=1..100)     

B:     if (x > 5) then 

C:       x = x*2 
       else 

D:       x = x+2 
       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 
       end 

G:     bar (i) 

     end loop 

Path-Based Calc 
foo()

C

B

D

E

F

end

tA=7 

tB=5 

tC=12 

tG=2 

! Find longest path 
" One loop at a time 

! Prepare the loop 
" Remove back edges 
" Redirect to special 

continue nodes 

A

continue

G

tD=2 

tF=8 

    foo(x,i):  
A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 
       else 

D:       x = x+2; 
       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 
       end 

G:     i = i+1; 

     end 

tE=4 

Path-Based Calculation 
foo()

C

B

D

E

F

end

tA=7 

tB=5 

tC=12 

tE=4 

tG=2 

! Longest path: 
" A-B-C-E-F-G 
" 7+5+12+4+8+2=  

38 cycles 

! Total time: 
" 100 iterations 
" 38 cycles per iteration 
" Total: 3800 cycles 

A

continue

G

tD=2 

tF=8 

Path-Based Calc 

!  Infeasible path: 
"  A-B-C-E-F-G 
"  Ignore, look for next 

    foo(x,i):  
A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 
       else 

D:       x = x+2; 
       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 
       end 

G:     i = i+1; 

     end 

C and F can 
never execute 

together 

foo()

C

B

D

E

F

end

tA=7 

tB=5 

tC=12 

tE=4 

tG=2 

A

continue

G

tD=2 

tF=8 

Path-Based Calc 
foo()

C

B

D

E

F

end

tA=7 

tB=5 

tC=12 

tE=4 

tG=2 

!  Infeasible path: 
"  A-B-C-E-F-G 
"  Ignore, look for next 

! New longest path: 
"  A-B-C-E-G 
"  30 cycles 

! Total time: 
"  Total: 3000 cycles 

A

continue

G

tD=2 

tF=8 

    foo(x,i):  
A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 
       else 

D:       x = x+2; 
       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 
       end 

G:     i = i+1; 

     end 

C and F can 
never execute 

together 

! IPET = Implicit path 
enumeration technique  
" Execution paths not 

explicitly represented  

! Program model: 
" Nodes and edges  
" Timing info (tentity) 

! Node times: basic blocks  
! Edge times: overlap 

" Execution count (Xentity) 

foo()

C

A

B

D

E

F

G

end

tA=7 

tD=2 

tB=5 

tC=12 

tE=4 

tF=8 

tG=2 

Example: IPET Calculation 

XGA 

XAB 

XBC XBD 

XDE 

XEG 

XCE 

XEF 

XFG 

XfooA 

XA 

XB 

XC XD 

XE 

XF 

XG 

Xfoo 

Xend 



! WCET= 
max Σ(Xentity * tentity) 
" Where each Xentity  

satisfies constraints 

! Constraints: 
" Start & end condition 
" Program structure 
" Loop bounds 
" Other flow information 

foo()

C

A

B

D

E

F

G

end

IPET Calculation 

XA 

XB 

XC XD 

XE 

XF 

XG 

Xfoo=1 

Xend=1 
 

XGA 

XAB 

XBC XBD 

XDE 

XEG 

XCE 

XEF 

XFG 

XfooA 

XAB+XAend=XA 

XE=XCE+XDE 

XA=XfooA+XGA 

XBC+XBD=XB 

XA<=100 

XC+XF<=XA 

XA 

XB 

XC XD 

XE 

XF 

XG 

Xfoo 

Xend 

! Solution methods: 
" Integer linear programming 
" Constraint satisfaction 

! Solution: 
" Counts for  

nodes and edges 
" A WCET bound 

foo()

C

A

B

D

E

F

G

end

IPET Calculation 

XA=100 

XB=100 

XC=100 XD=0 

XE=100 

XF=0 

XG=100 

WCET=3000 

Xfoo=1 

Xend=1 

Hybrid 
methods 

Hybrid methods 
! Combines measurement and static analysis 
! Methodology: 

"  Partition code into smaller parts  
"  Identify & generate instrumentation  

points (ipoints) for code parts  
"  Run program and generate ipoint traces 
"  Derive time interval/distribution and flow info for 

code parts based on ipoint traces 
"  Use code part’s time interval/distribution and flow 

info to create a program WCET estimate 

! Basis for RapiTime WCET analysis tool! 

int foo(int x) { 

   write_to_port(’A’); 
   int i = 0; 

   while(i < x) { 

      write_to_port(’B’); 

      i++; 

   } 
} 

Example: loop bound derivation 

! 3 example traces:  
" Run1: ABBBABBBBA 
" Run2: ABBAAABBA 
" Run3: ABBBBBBA 
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Instrumentation code 

Instrumentation code 

! Result (based on  
provided traces):  
" Lower loop bound: 0 
" Upper loop bound: 6 Valid for an  

entry of foo()  

int foo(int x) { 

   write_to_port(’A’,TIME); 
   int i = 0; 

   while(i < x) { 

      i++; 

   } 

   write_to_port(’B’,TIME); 
} 

Example: function time derivation 

! Example trace:  
" <A,72>,<B,156>, 

 <A,2001>,<B,2191>, 
 <A,2555>,<B,2661> 
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Instrumentation 
code extended 

with TIME macro 

! Result (based on  
provided trace):  
" Min time foo: 84 

(156-72=84) 
" Max time foo: 190 

(2191-2001=190) 
Realized as a short 
assembler snippet 
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Notes: Hybrid methods 
#  Testing and instrumentation already used in industry! 

"  Known testing coverage criteria can be used  
#  No hardware timing model needed! 

"  Relatively easy to adapt analysis to new hardware targets 

–  Is the resulting WCET estimate safe? 
"  Have all costly software paths been executed? 
"  Have all hardware effects been provoked/captured? 

–  How much do instrumentation affect execution time? 
"  Will timing behavior differ if they are removed? 
"  Often constraints on where instrumentation points can be placed 
"  Often limits on the amount of instrumentation points possible 
"  Often limits on the bandwidth available for traces extraction   

–  Are task switches/interrupts detected? 
"  If not, derived timings may include them! 

 

WCET  
analysis  

tools 
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WCET Analysis Tools 
! Several more or less complete tools 
! Commercial tools: 

"  aiT from AbsInt 
"  Bound-T from TidoRum 
"  RapiTime from 

Rapita Systems 

! Research tools: 
"  SWEET – Swedish  

Execution Time tool  
"  OTAWA (France) 
"  TUBound (Austria) 
"  Chronos (Singapore) 

The Bound-T WCET tool 
! A commercial WCET analysis tool 

" Provided by Tidorum Ltd, www.tidorum.fi 
" Decodes instructions, construct CFGs,  

call-graphs, and calculates WCET from  
the executable 

! A variety of  
CPUs supported: 
" Including the  

Renesas H8/3297 
" Porting made as MSc  

thesis project at MDH 
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WCET tool differences 
! Used static and/or hybrid methods 
! User interface 

"  Graphical and/or textual 
! Flow analysis performed  

"  Manual annotations supported 
! How the mapping problem is solved 

"  Decoding binaries 
"  Integrated with compiler 

! Supported processors and compilers  
! Low-level analysis performed 

"  Type of hardware features handled 
! Calculation method used 

90 

Supported CPUs (2008) 
Tool Hardware platforms 
aiT Motorola PowerPC MPC 555, 565, and 755, Motorola ColdFire MCF 

5307, ARM7 TDMI, HCS12/STAR12, TMS320C33, C166/ST10,  
Renesas M32C/85, Infineon TriCore 1.3 

Bound-T Intel-8051, ADSP-21020, ATMEL ERC32, Renesas H8/300,  
ATMEL AVR and ATmega, ARM7 

RapiTime Motorola PowerPC family, HCS12 family, ARM, NECV850, MIPS3000 
SWEET ARM9, NECV850E 
Heptane Pentium1, StrongARM 1110, Renesas H8/300 
Vienna  M68000, M68360, Infineon C167, PowerPC, Pentium 

Florida MicroSPARC I, Intel Pentium, StarCore SC100, Atmel Atmega, PISA/
MIPS 

Chalmers PowerPC 
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Industrial usage 
! Static/hybrid WCET analysis are today used in 

real industrial settings 
! Examples of industrial usage: 

" Avionics: Airbus, aiT 
" Automotive: Ford, aiT 
" Avionics: BAE Systems, RapiTime 
" Automotive: BMW, RapiTime 
" Space systems: SSF, Bound-T 

! However, most companies are still highly 
unaware of the concepts of “WCET analysis” 
and/or “schedulability analysis” 

The SWEET 
approach to 

WCET analysis 

The MDH WCET project 
! Researching on static WCET analysis 

" Developing the SWEET (SWEdish  
Execution Time) analysis tool 

! Research focus:  
" Flow analysis 
" Technology transfer to industry 
"  International collaboration 
" Parametrical WCET analysis 
" Early-stage WCET analysis* 
" WCET analysis for multi-core* 

! Previous research focus: 
" Low-level analysis 
" Calculation 
 

* = new project activities 

Technology transfer to 
industry (and academia)  

! Evaluation of WCET analysis in industrial settings  
"  Targeting both WCET tool providers and industrial users 
"  Using state-of-the-art WCET analysis tools  

! Applied as MSc thesis works:  
"  Enea OSE, using SWEET & aiT  
"  Volcano Communications, using aiT 
"  Bound-T adaption to Lego Mindstorms and  

Renesas H8/300. Used in MDH RT courses  
"  CC-Systems, using aiT & measurement tools 
"  Volvo CE using aiT & SWEET  
" …. 

! Articles and MSc thesis reports  
available on the MRTC web  

95 

Flow analysis 
!  Main focus of the MDH WCET analysis group 

"  Motivated by our industrial case studies 
!  We perform many types of advanced  

program analyses:  
"  Program slicing (dependency analysis) 
"  Value analysis (abstract interpretation) 
"  Abstract execution 

 ... 
!  Both loop bounds and  

infeasible paths are derived 
!  Analysis made on  

ALF intermediate code 
"  ~ “high level assembler” 

A  

C  

x > 5  

B  

x < 3  

D  

 E Path A-C is 
infeasible! 

x = 1..10 

x = 6..10 

x = 1..4 

x = 1..2 
x = 3..8 

Hardware 

Where SWEET comes in… 

C Source 

WCET Low-level 
analysis Calculation 

SWEET 

C Source 

Object File 

Object File 

WCET 
Estimate 

Compiler 

C Source 

Flow  
analysis 

Input value 
constraints 

ALF 

Compiler 

Linker 

Executable 

Object File C Library 

C Runtime 

Other Lib 

OS 

LOW-SWEET 

ALF 

Object File 

Executable Binary  
reader 



Slicing for flow analysis 
!  Observation: some variables and statements  

do not affect the execution flow of the program 
= they will never be used to determine the outcome of conditions   

!  Idea: remove variables and statements which are 
guaranteed to not affect execution flow 
"  Subsequent flow analyses should provide same result 

but with shorter analysis time 
!  Based on well-known program slicing techniques 

"  Reduces up to 94%  
of total program  
size for some of  
our benchmarks 

1.   a[0] = 42; 
2.   i = 1; 
3.   j = 5; 
4.   n = 2 * j; 
5.   while (i <= n) {  
6.       a[i] = i * i; 
7.       i = i + 2; 
8.   } 

1. 
2.   i = 1; 
3.   j = 5; 
4.   n = 2 * j; 
5.   while (i <= n) {  
6. 
7.       i = i + 2; 
8.   } 

Value analysis 
! Based on abstract interpretation (AI) 

"  Calculates safe approximations of possible values  
for variables at different program points 

"  E.g. interval analysis gives i = [5..100] at p 
"  E.g. congruence analysis gives i = 5 + 2* at p 

! Builds upon well known  
program analysis techniques   
"  Used e.g. for checking array bound violations 

! Requires abstract versions of all  
ALF instructions 
"  These abstract instructions work on abstract values  

(representing set of concrete values) instead of normal ones 

 i=5; 
 max=100; 
 while(i<=max) { 
     // point p 
     i=i+2; 
 } 

99 

Loop bound analysis by AI 
!  Observation: the number of possible program  

states within a loop provides a loop bound 
"  Assuming that the loop terminates 

!  Loop bound = product of possible  
values of variables within the loop 

!  Example:  
"  Interval analysis gives  

i = [5..100] and max=[100..100] at p  
"  Congruence analysis gives 

 i = 5 + 2* and max=100+0* at p 
"  The produce of possible values become:  

size(i) * size(max) = ((100-5)/2) * (100-100)/1) = 45 * 1 = 45  
which is an upper loop bound  

!  Analysis bounds some but not all loops 

 i=5; 
 max=99; 
 while(i<=max) { 
     // point p 
     i=i+2; 
 } 

Abstract Execution (AE) 
! Derives loop bounds and infeasible paths 
! Based on Abstract Interpretation (AI) 

" AI gives safe (over)approximation of possible values  
of each variable at different program points 

" Each variable can hold a set of values 

! “Executes” program using abstract values  
" Not using traditional AI fixpoint calculation 

! Result: an (over)approximation of the 
possible execution paths 

" All feasible paths will be included in the result 
" Might potentially include some infeasible paths 
"  Infeasible paths found are guaranteed to be infeasible 

i = [1..4] 

Loop bound analysis by AE 

! Result includes all possible loop executions  
! Three new abstract states generated at q 

" Could be merged to one single abstract state:   
          i=[10..11]  

 

i = INPUT;  

// i = [1..4] 
while(i < 10) { 
   // point p 
   ... 
   i = i + 2; 
} 
// point q 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 
2 i = [3..6] ┴ 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 
2 i = [3..6] ┴ 
3 i = [5..8] ┴ 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 
2 i = [3..6] ┴ 
3 i = [5..8] ┴ 
4 i = [7..9] i = [10..10] 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 
2 i = [3..6] ┴ 
3 i = [5..8] ┴ 
4 i = [7..9] i = [10..10] 
5 i = [9..9] i = [10..11] 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 
2 i = [3..6] ┴ 
3 i = [5..8] ┴ 
4 i = [7..9] i = [10..10] 
5 i = [9..9] i = [10..11] 
6 ┴ i = [11..11] 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 
2 i = [3..6] ┴ 
3 i = [5..8] ┴ 
4 i = [7..9] i = [10..10] 
5 i = [9..9] i = [10..11] 
6 ┴ i = [11..11] 

Result 
Min iterations: 3 
Max iterations: 5 

[5..8] 
[7..9] 
[9..9] 

[10..10] 
[10..11] 
[11..11] 

[1..4] 
[3..6] 

Multi-core  
+ WCET 
analysis? 



Trends in Embedded HW 
! Trend: Large variety of ES HW platforms 

"  Not just one main processor type as for PCs  
"  Many different HW configurations (memories, devices, …)  
"  Challenge: How to make WCET analysis portable between 

platforms? 

! Trend: Increasingly complex HW  
features to boost performance 
"  Taken from the high-performance CPUs 
"  Pipelines, caches, branch predictors,  

superscalar, out-of-order, … 
"  Challenge: How to create safe and tight HW timing models?  

! Trend: Multi-core architectures 

Multi-core architectures 
!  Several (simple) CPUs on one chip 

"  Increased performance & lower power  
"  “SoC”: System-on-a-Chip possible 

!  Explicit parallelism 
"  Not hidden as in superscalar architectures 

!  Likely that CPUs will be less complex  
than current high-end processors  
"  Good for WCET analysis! 

!  However, risk for more shared  
resources: buses, memories, … 
"  Bad for WCET analysis! 
"  Unrelated threads on other cores  

might use shared resources 
!  Analysis of multi-core is simplified if predictable sharing  

of common resources is somehow enforced 

Multicore chip 

core 

L1 cache 

core 

L1 cache 

core 

L1 cache 

L2 cache 

RAM 

Devices 

etc. Network 

Timer Serial 

Example: shared bus 
!  Example, dual core processor with private L1 

caches and shared memory bus for all cores 
"  Each core runs its own code and task 

!  Problem:  
"  Whenever t1 needs something from  

memory it may or may not collide with  
t2’s accesses on the memory bus 

"  Depends on what t1 and t2 accesses  
and when they accesses it 

"  Large parallel state space to explore  

!  Possible solution:  
"  Use deterministic (but potentially pessi- 

mistic) bus schedule, like TDMA  
"  Worst-case memory bus delay can then  

be bounded  

int t1_code { 
  if(...) { 
   ... 
  } 
  ...  
} 

int t2_code { 
  ... 
  while(...) { 
    ... 
  } 
} 

TDMA  bus  
schedule 

Example: shared memory 
!  ES often programmed using shared memory model 

"  t1 and t2 may communicate/synchronize using shared variables 

!  Problem: 
"  When t1 writes g, memory block of g is loaded into core1’s d-cache 
"  Similarly, when t2’s writes g, memory  

block of g moved to t2’s d-cache (and  
t1’s block is invalidated) 

!  May give a large overhead 
"  Much time can be spent moving memory  

blocks in between caches (ping-pong) 
"  Hidden from programmer - HW makes  

sure that cache/memory content is ok  
"  False sharing – when tasks accesses  

different variables, but variables are  
located in same memory block  

!  Possible solutions: 
"  Constrain task’s accesses to shared  

memory (e.g. single-shot task model)  
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int t1_code { 
  if(...) { 
   ... 
   g=5; 
  } 
  ...;  
} 

int t2_code { 
  ... 
  while(...) { 
    ... 
    g++; 
  } 
} 

Example: multithreading 
!  Common on high-order multi-cores and GPUs 
!  Core run multiple threads of execution in parallel 

"  Parts of core that store state of threads (registers, PC, ..) replicated  
"  Core’s execution units and caches shared between threads 

!  Benefits 
"  Hides latency – when one thread 

stalls another may execute instead 
"  Better utilization of core’s computing 

resources – one thread usually only  
use a few of them at the same time 

!  Problems  
"  Hard to get timing predictability 
"  Instructions executing and cache  

content depends dynamically on  
state of threads, scheduler, etc. 
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int t1_code { 
...;  
} 

int t3_code { 
...;  
} int t2_code { 

...;  
} 

Trends in Embedded SW 

! Traditionally: embedded SW written in C  
and assembler, close to hardware  

! Trend: size of embedded SW increases 
" SW now clearly dominates ES development cost 
" Hardware used to dominate 

! Trend: more ES development by high-level 
programming languages and tools 
" Object-oriented programming languages 
" Model-based tools 
" Component-based tools 



Increase in embedded SW size 
! More and more functionality required 

"  Most easily realized in software 

! Software gets more and more complex 
"  Harder to identify the timing critical part of the code 
"  Source code not always available for all parts of the 

system, e.g. for SW developed by subcontractors  

! Challenges for WCET analysis: 
"  Scaling of WCET analysis methods to larger code sizes 

! Better visualization of results (where is the time spent?) 
"  Better adaptation to the SW development process  

! Today’s WCET analysis works on the final executable  
! Challenge: how to provide reasonable precise WCET 

estimates at early development stages  

Higher-level prog. languages 
! Typically object-oriented: C++, Java, C#, … 
! Challenges for WCET analysis: 

" Higher use of dynamic data structures 
! In traditional ES programming all data is statically 

allocated during compile time  
" Dynamic code, e.g., calls to virtual methods  

! Hard to analyze statically (actual method called  
may not be known until run-time) 

" Dynamic middleware:  
! Run-time system with GC 
! Virtual machines with JIT compilation 

Model-based design 
!  More embedded system code generated by 

higher-level modeling and design tools 
"  RT-UML, Ascet, Targetlink, Scade, ... 

!  The resulting code structure  
depends on the code generator 
"  Often simpler than handwritten code 

!  Possible to integrate such tools 
with WCET analysis tools 
"  The analysis can be automated 
"  E.g., loop bounds can be provided  

directly by the modeling tool 

!  Hard to provide reliable timing on  
modeling level 

model 

...
label rerun: 
if(flag1 || flag2) ...
else
   goto rerun;
...

generated 
code 

….´
10010101001110101100101001 
10010101001110101100101001
10100101010101001010010100
10010101010101010100101010
....

executable 

Component-based design 
! Very trendy within software engineering 
! General idea:  

" Package software into reusable  
components   

" Build systems out of prefabricated  
components, which are “glued together” 

! WCET analysis challenges: 
" How to reuse WCET analysis results  

when some settings have changed?  
" How to analyze SW components  

when not all information is available?  
" Are WCET analysis results composable? 

Compiler interaction 
!  Today – commercial WCET analysis tools  

analyses binaries 
!  Another possibility – interaction with the compiler 

"  Easier to identify data objects and to understand  
what the program is intended to do 

!  There exists many compilers for  
embedded systems 
"  Very fragmented market  
"  Each specialized on a few particular targets 
"  Targeting code size and execution speed 

!  Integration with WCET analysis tools  
opens new possibilities:  
"  Compile for timing predictability 
"  Compile for small WCET  
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The End! 
 

For more information: 
www.mrtc.mdh.se/projects/wcet 


