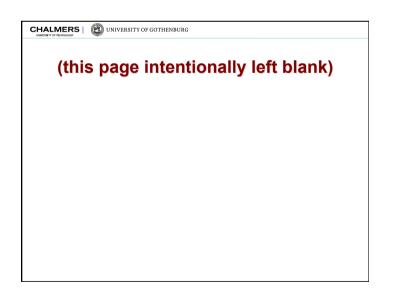


Course evaluation:

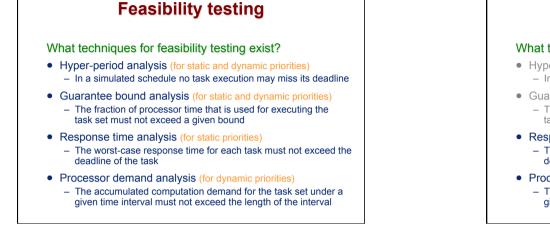
- The following students have been selected to be course representatives:
 - Johan Gustafsson (MPCSN)
- Fredrik Hidstrand (MPCSN)
- Henrik Hugo (MPCSN)
- Emil Lindqvist (MPEES)
- Eyþór Sigmundsson (MPCSN)

Please contact them whenever you have comments or suggestions for improvements. Contact information is available on the course home page.

Parallel & Distributed

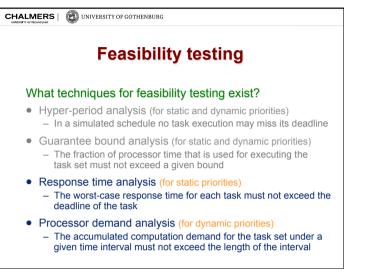

Real-Time Systems

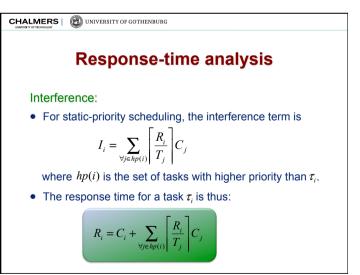
Lecture #6


Professor Jan Jonsson

Department of Computer Science and Engineering

Chalmers University of Technology


2


EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Updated March 31, 2015

(B) UNIVERSITY OF GOTHENBURG

CHALMERS

CHALMERS | (a) UNIVERSITY OF GOTHENBURG Response time: • The response time R_i for a task τ_i represents the worstcase completion time of the task when execution interference from other tasks are accounted for. • The response time for a task τ_i consists of: C_i The task's uninterrupted execution time (WCET) I_i Interference from higher-priority tasks $R_i = C_i + I_i$

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Updated March 31, 2015

(B) UNIVERSITY OF GOTHENBURG CHALMERS | (UNIVERSITY OF GOTHENBURG **Response-time analysis Response-time analysis** Response-time calculation: Schedulability test: (Joseph & Pandya, 1986)

- The equation does not have a simple analytic solution.
- However, an iterative procedure can be used:

 $R_i^{n+1} = C_i + \sum_{\forall j \in hp(i)} \left[\frac{R_i^n}{T_i} \right] C_j$

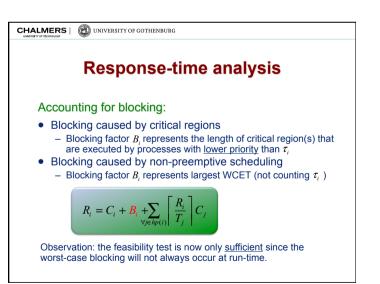
• The iteration starts with a value that is guaranteed to be less than or equal to the final value of \vec{R}_i (e.g. $R_i^0 = C_i$)

• The iteration completes at convergence $(R_i^{n+1} = R_i^n)$ or if the response time exceeds the deadline D_{i}

(E) UNIVERSITY OF GOTHENBURG CHALMERS **Response-time analysis** Time complexity: Response-time analysis has pseudo-polynomial time complexity

Proof:

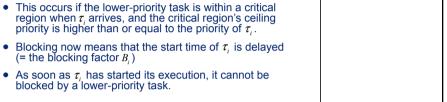
CHALMERS


- calculating the response-time for task τ_i requires no more than D, iterations
- since $D_i \leq T_i$ the number of iterations needed to calculate the response-time for task τ_i is bounded above by $Q_i^{\text{max}} = T_i$
- the procedure for calculating the response-time for all tasks is therefore of time complexity $O(\max\{T_i\})$
- the longest period of a task is also the largest number in the problem instance

- The test is only valid if all of the following conditions apply: 1. Single-processor system
 - 2. Synchronous task sets

Lecture #6

- 3. Independent tasks
- 4. Periodic tasks
- 5. Tasks have deadlines not exceeding the period $(D_i \leq T_i)$

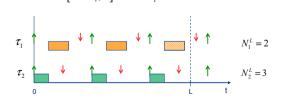


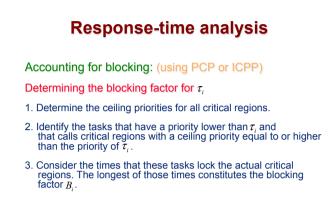
4

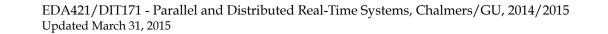
(= the blocking factor B_{i}) • As soon as τ_i has started its execution, it cannot be blocked by a lower-priority task. (C) UNIVERSITY OF GOTHENBURG CHALMERS **Processor-demand analysis** Processor demand: • The processor demand for a task τ_i in a given time interval [0, L] is the amount of processor time that the task needs in the interval in order to meet the deadlines that fall within the interval.

- Let N_i^L represent the number of instances of τ_i that must complete execution before L.
- The total processor demand up to L is

 $C_{P}(0,L) = \sum_{n=1}^{\infty}$


CHALMERS | (UNIVERSITY OF GOTHENBURG


CHALMERS | () UNIVERSITY OF GOTHENBURG


Processor-demand analysis

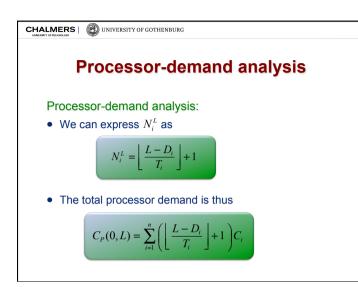
Number of relevant task arrivals:

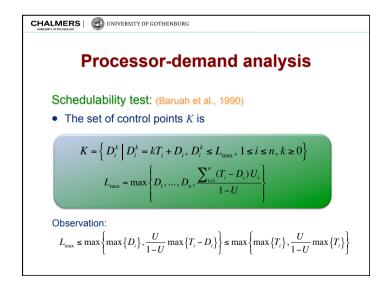
- We can calculate N_i^L by counting how many times task τ_i has arrived during the interval [0, L-D]
- We can ignore instance of the task that has arrived during the interval $[L - D_i, L]$ since $D_i > L$ for these instances.

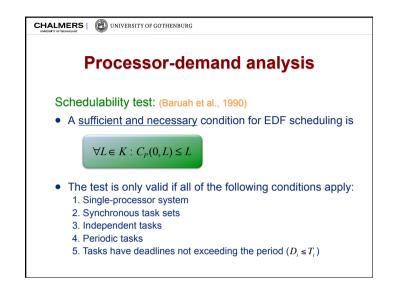
Response-time analysis

• When using priority ceiling a task τ_i can only be blocked

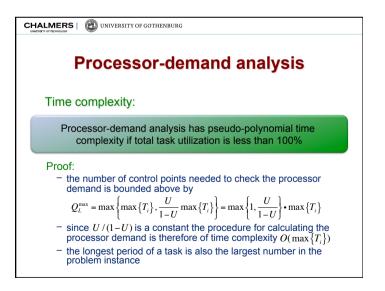
Accounting for blocking: (using PCP or ICPP)

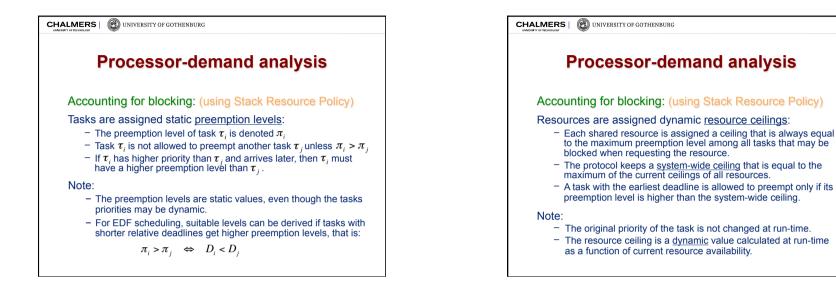

once by a task with lower priority than τ .

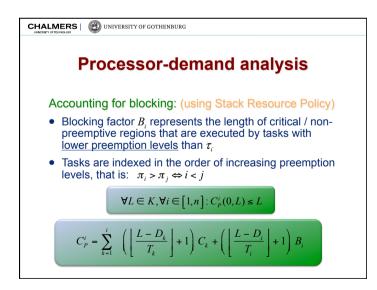

(E) UNIVERSITY OF GOTHENBURG

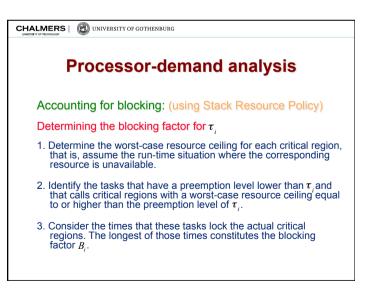

CHALMERS

Lecture #6


EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Updated March 31, 2015






Lecture #6

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Updated March 31, 2015

