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The ”Bandersnatch” problem 

Background: 
 

 Find a good method for determining whether or not any 
given set of specifications for a new bandersnatch 
component can be met and, if so, for constructing a 
design that meets them. 



The ”Bandersnatch” problem 

Initial attempt: 
 Pull down your reference books and plunge into the task 
with great enthusiasm.  

Some weeks later ... 
 Your office is filled with crumpled-up scratch paper, and 
your enthusiasm has lessened considerable because … 

 … the solution seems to be to examine all possible designs! 
 
New problem: 

 How do you convey the bad information to your boss?   



The ”Bandersnatch” problem 

Approach #1: Take the loser’s way out   

Drawback: Could seriously damage your position within the company 



The ”Bandersnatch” problem 

Approach #2: Prove that the problem is inherently intractable
  

Drawback: Proving inherent intractability can be as hard as finding 
efficient algorithms. Even the best theoreticians have failed! 



The ”Bandersnatch” problem 

Approach #3: Prove that the problem is NP-complete  

Advantage: This would inform your boss that it is no good to fire you 
and hire another expert on algorithms. 



NP-complete problems: 
Problems that are “just as hard” as a large number of 
other problems that are widely recognized as being 
difficult by algorithmic experts. 

NP-complete problems 



NP-complete problems 

Problem: 
•  A general question to be answered 

Example: The “traveling salesman optimization problem” 

Instance: 
•  An instance of a problem is obtained by specifying 

particular values for all the problem parameters 
Example:   

C = c1,c2 ,c3,c4{ },d c1,c2( ) =10,d c1,c3( ) = 5,d c1,c4( ) = 9,

  d c2 ,c3( ) = 6,d c2 ,c4( ) = 9,d c3,c4( ) = 3

Parameters: 
•  Free problem variables, whose values are left unspecified 

Example: A set of “cities”                       and a “distance”                 
between each pair of cities     and    

d ci ,c j( )
 ci  

c j

C = c1,...,cn{ }
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NP-complete problems 

The Traveling Salesman Optimization Problem: 

Minimum “tour” length = 27 

Minimize the length of the “tour” that visits each city in 
sequence, and then returns to the first city. 



NP-complete problems 

The theory of NP-completeness applies only to decision problems, 
where the solution is either a “Yes” or a “No”. 

If an optimization problem asks for a structure of a certain type that 
has minimum “cost” among such structures, we can associate with 
that problem a decision problem that includes a numerical bound B  

as an additional parameter and that asks whether there exists a 
structure of the required type having cost no more than B. 
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NP-complete problems 

The Traveling Salesman Decision Problem: 

Is there a “tour” of all the cities in C having a total 
length of no more than B? 



Reasonable encoding scheme: 
•  Conciseness:  

–  The encoding of an instance I should be concise and not 
“padded” with unnecessary information or symbols 

–  Numbers occurring in I should be represented in binary  
(or decimal, or octal, or in any fixed base other than 1) 

•  Decodability: 
–  It should be possible to specify a polynomial-time algorithm that 

can extract a description of any component of I. 

Intractability 



Input length: 
•  The number of information symbols needed for describing a 

problem instance using a reasonable encoding scheme 
Example: 

  
Len = n+ log2 B!" #$+max log2 d(ci ,cj )!" #$ : ci ,cj ∈ C{ }

Largest number: 
•  The magnitude of the largest number in a problem instance 

Example: 
  
Max =max d(ci ,cj ) : ci ,cj ∈ C{ }

Time-complexity function: 
•  Expresses an algorithm’s time requirements giving, for each 

possible input length, the largest amount of time needed by 
the algorithm to solve a problem instance of that size 

Intractability 



Polynomial-time algorithm: 
•  An algorithm whose time-complexity function is             

for some polynomial function   , where       is the input 
length. 

  O( p(Len))

 p  Len

Exponential-time algorithm: 
•  Any algorithm whose time-complexity function cannot be 

so bounded. 

A problem is said to be intractable if it is so hard that no 
polynomial-time algorithm can possibly solve it. 

Intractability 



Class P 

Deterministic algorithm: (Deterministic Turing Machine) 
•  Finite-state control:  

–  The algorithm can pursue only one computation at a time 
–  Given a problem instance I, some structure (= solution) S  

is derived by the algorithm 
–  The correctness of S is inherent in the algorithm 

The class P is the class of all decision problems Π that, 
under reasonable encoding schemes, can be solved by 

polynomial-time deterministic algorithms. 



Class NP 

Non-deterministic algorithm: (Non-Deterministic Turing Machine) 
  1. Guessing stage:  

–  Given a problem instance I, some structure S is “guessed”. 
–  The algorithm can pursue an unbounded number of independent 

computational sequences in parallel. 

  2. Checking stage:  
–  The correctness of S is verified in a normal deterministic manner 

The class NP is the class of all decision problems Π that, 
under reasonable encoding schemes, can be solved by 

polynomial-time non-deterministic algorithms. 



Relationship between P and NP 

Observations: 
  1. P ⊆ NP 

–  Proof: use a polynomial-time deterministic algorithm as the 
checking stage and ignore the guess .... 

  2. P ≠ NP 
–  This is a wide-spread belief, but … 
–  … no proof of this conjecture exists! 

The question of whether or not the NP-complete problems are 
intractable is now considered to be one of the foremost open 

questions of contemporary mathematics and computer science! 



NP-complete problems 

Reducibility: 
•  A problem Π’ is reducible to problem Π if, for any 

instance of Π’, an instance of Π can be constructed in 
polynomial time such that solving the instance of Π will 
solve the instance of Π’ as well. 

 
When Π’ is reducible to Π, we write Π’ ∝ Π 

A decision problem Π is said to be NP-complete if Π ∈ NP 
and, for all other decision problems Π’ ∈ NP,  

Π’ polynomially reduces to Π. 



NP-hard problems 

Turing reducibility: 
•  A problem Π’ is Turing reducible to problem Π if there 

exists an algorithm A that solves Π’ by using a 
hypothetical subroutine S for solving Π such that, if S 
were a polynomial time algorithm for Π, then A would 
be a polynomial time algorithm for Π’ as well. 

When Π’ is Turing reducible to Π, we write Π’ ∝T Π 

A search problem Π is said to be NP-hard if there exists 
some decision problem Π’ ∈ NP that Turing-reduces to Π.  



NP-hard problems 

Observations: 
•  All NP-complete problems are NP-hard 
•  Given an NP-complete decision problem, the 

corresponding optimization problem is NP-hard 
To see this, imagine that the optimization problem (that is, finding 

the optimal cost) could be solved in polynomial time.  
The corresponding decision problem (that is, determining whether 

there exists a solution with a cost no more than B) could then be 
solved by simply comparing the found optimal cost to the bound 
B. This comparison is a constant-time operation. 



Strong NP-completeness 

Pseudo-polynomial-time algorithm: 
  An algorithm whose time-complexity function is             

for some polynomial function   , where       is the input  
length and        is the largest number. 

  O( p(Len, Max))

 p  Len
 Max

Number problem: 
  A decision problem for which there exists no polynomial 

function     such that                       for all instances of  
the problem. 

 p   Max ≤ p(Len)

  Examples: 
–  PARTITION, KNAPSACK, TRAVELING SALESMAN 
–  MULTIPROCESSOR SCHEDULING 



Strong NP-completeness 

If a decision problem Π is NP-complete and is not a number problem, then it 
cannot be solved by a pseudo-polynomial-time algorithm unless P = NP.  

Assuming P ≠ NP, the only NP-complete problems that are potential candidates 
for being solved by pseudo-polynomial-time algorithms are those that are 

number problems.  

A decision problem Π which cannot be solved by a pseudo-
polynomial-time algorithm, unless P = NP, is said to be  

NP-complete in the strong sense.  



Circumventing NP-completeness 

Tricks for circumventing the intractability: 
 1. Limiting the largest number in the problem instance 
 2. Redefining the problem (e.g. edge vs vertex cover) 
 3. Exploiting problem structure (e.g. limits on vertex 

degrees, ”intree” vs ”outtree” task graphs) 
 4. Fixing problem parameters (e.g. fixed # of processors 

in multiprocessor scheduling) 



History of NP-completeness 

S. Cook: (1971)  
“The Complexity of Theorem Proving Procedures” 
 Every problem in the class NP of decision problems 
polynomially reduces to the SATISFIABILITY problem:  
    Given a set U of Boolean variables and a collection C of  

clauses over U, is there a satisfying truth assignment for C ? 

R. Karp: (1972)  
“Reducibility among Combinatorial Problems” 
 Decision problem versions of many well-known 
combinatorial optimization problems are “just as hard”  
as SATISFIABILITY. 



History of NP-completeness 

D. Knuth: (1974)  
“A Terminological Proposal” 
 Initiated a researcher’s poll in search of a better term for 
“at least as hard as the polynomial complete problems”. 

 
 One suggestion by S. Lin was PET problems: 

–  “Probably Exponential Time”  (if P = NP remain open question) 
–  “Provably Exponential Time”  (if P ≠ NP) 
–  “Previously Exponential Time” (if P = NP) 



Proving NP-completeness 

Proving NP-completeness for a decision problem Π: 

 1. Show that Π is in NP 

  2. Select a known NP-complete problem Π’ 

 3. Construct a transformation ∝ from Π’ to Π 

 4. Prove that ∝ is a (polynomial) transformation 



Basic NP-complete problems 

3-SATISFIABILITY 

SATISFIABILITY 

3-DIMENSIONAL  
MATCHING 

CLIQUE 

VERTEX COVER HAMILTONIAN 
CIRCUIT 

PARTITION 

MINIMUM COVER 

KNAPSACK 

MULTIPROCESSOR 
SCHEDULING 

LONGEST PATH 

3-PARTITION 

TRAVELING 
SALESMAN 

MAX CUT 

CLUSTERING 

PREEMPTIVE 
SCHEDULING 

BIN PACKING 

GRAPH 
COLORABILITY 

INTEGER 
PROGRAMMING 

DEADLOCK 
AVOIDANCE 

REGISTER 
SUFFICIENCY 

JOB-SHOP 
SCHEDULING 

ANNIHILATION 



NP-complete scheduling problems 

Uniprocessor scheduling with offsets and deadlines: 

Independent tasks with individual offsets and deadlines. 
Transformation from 3-PARTITION  (Garey and Johnson, 1977) 

NP-complete in the strong sense. 
Solvable in pseudo-polynomial time if number of allowed values 

for offsets and deadlines is bounded by a constant. 
Solvable in polynomial time if execution times are identical, 

preemptions are allowed, or all offsets are 0. 



NP-complete scheduling problems 

Multiprocessor scheduling: 

Independent tasks with an overall deadline. 
Transformation from PARTITION  (Garey and Johnson, 1979) 

NP-complete in the strong sense for arbitrary number of processors. 
NP-complete in the normal sense for two processors. 
Solvable in pseudo-polynomial time for any fixed number of 

processors. 
Solvable in polynomial time if execution times are identical. 



NP-complete scheduling problems 

Precedence-constrained multiprocessor scheduling: 

Precedence-constrained tasks with identical execution times and 
an overall deadline. 

Transformation from 3-SATISFIABILITY  (Ullman, 1975) 

NP-complete in the normal sense for arbitrary number of processors. 
Solvable in polynomial time for two processors, or for arbitrary 

number of processors and “forest-like” precedence constraints. 
Remains an open problem for fixed number of processors (≥ 3). 



NP-complete scheduling problems 

Multiprocessor scheduling with individual deadlines: 

Precedence-constrained tasks with identical execution times and 
individual deadlines. 

Transformation from VERTEX COVER (Brucker, Garey and Johnson, 1977) 

NP-complete in the normal sense for arbitrary number of processors. 
Solvable in polynomial time for two processors or “in-tree” 

precedence constraints. 



NP-complete scheduling problems 

Preemptive uniprocessor scheduling of periodic tasks: 

Independent tasks with individual offsets and periods, and 
preemptive dispatching. 

Transformation from CLIQUE  (Leung and Merrill, 1980) 

NP-complete in the normal sense. 



NP-complete scheduling problems 

Non-preemptive uniprocessor scheduling of periodic tasks: 

Independent tasks with individual offsets and periods, and  
non-preemptive dispatching. 

Transformation from 3-PARTITION  (Jeffay, Stanat and Martel, 1991) 

NP-complete in the strong sense. 

Additional reading: 
Read the paper by Jeffay, Stanat and Martel (RTSS’91) 
Study particularly how the transformation from 3-PARTITION is 

used for proving strong NP-completeness (Theorem 5.2) 


