
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #11
Updated May 2, 2015

1

Parallel & Distributed
Real-Time Systems

Lecture #11

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Handling aperiodic tasks

Architecture

Target
environment

Static (periodic) tasks

1τ
2τ

3τ 4τ

Hardware platform

Run-time system
S

S

S

A

A

Operator
panel

Operator
display

1µ

2µ 3µ

Aperiodic task

Aτ

centralized arrival

distributed arrival

Handling (hard) aperiodic tasks on multiprocessors:
1. Feasibility test:

–  Check whether an aperiodic task can be scheduled on the local
processor (distributed arrival) or on any processor (centralized
arrival)

2. Task forwarding:
–  In case an aperiodic task cannot be scheduled locally, attempt

to forward it to another processor. (distributed arrival only)

Server-less approach

Feasibility tests for aperiodic tasks:

•  Requires a fast on-line algorithm
–  Utilization-based tests are good candidates

•  Requires a new concept of processor load
–  Traditional load measures assume periodic tasks

•  Requires a new view on task priorities
–  Traditional views, such as static and dynamic, are based on

periodic task models
•  Requires support for multiprocessors

–  Solutions needed for partitioned and global scheduling

Server-less approach

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #11
Updated May 2, 2015

2

Guarantee bound for liquid tasks: (Abdelzaher and Lu, 2001)

Feasibility test

•  Redefined the theory for schedulability analysis by …
… assuming a liquid task model, where task computation times

are in general much smaller than task deadlines (Ci << Di)

… assuming a time-independent scheduling policy where task
priorities do not depend on task arrival times (i.e. not EDF)

… introducing the concept of synthetic utilization to account for
individual task instances that are current at a given time

… introducing a synthetic guarantee bound which, if not exceeded,
guarantees that deadlines are met for all current task instances

Guarantee bound for liquid tasks:

Feasibility test

•  For time-independent scheduling on a uniprocessor …
… deadline-monotonic scheduling is optimal for liquid aperiodic

tasks in the sense that it maximizes the guarantee bound

… the guarantee bound is lower than the bound for rate-
monotonic scheduling of periodic tasks (by Liu & Layland)

… the real utilization of admitted tasks can be much higher than
the synthetic guarantee bound, often close to 100% ⇒ using
the (seemingly low) bound will not underutilize the processor

 (note that feasibility tests for periodic tasks do not exhibit such
a property)

Feasibility test

Current tasks:

•  In the example below, task is current at time , while
tasks and are not.

2τ
1τ 3τ

t

•  A task is said to be current at time if it has arrived at or
before , but its deadline has not yet expired.

t
t

0 t

3τ

2τ

1τ tat current not

tat current not

tat current

Feasibility test

Synthetic utilization:

Let be the set of current tasks at time , that is: tV ζ (t)

V ζ (t) = τ i ai ≤ t ≤ ai + Di{ }

The synthetic utilization is then defined as:)(tU ζ

Uζ (t) = Ci

Diτ i∈V
ζ (t)
∑

Note that the synthetic utilization is a function of time!

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #11
Updated May 2, 2015

3

Feasibility test

Guarantee-bound analysis for liquid tasks:
•  A sufficient condition for DM scheduling of liquid tasks is

Uζ (t) ≤ 1
2
+ 1
2n

for n < 3

Uζ (t) ≤ 1

1+ 1
2
1− 1

n −1
⎛
⎝⎜

⎞
⎠⎟

for n ≥ 3

Feasibility test

Guarantee-bound analysis for liquid tasks:
•  A conservative lower bound on the utilization can be

derived by letting n→∞

lim
n→∞

1

1+ 1
2

1− 1
n−1

⎛
⎝⎜

⎞
⎠⎟

= 1

1+ 1
2

≈ 0.586

This bound is thus lower than the RM bound for periodic tasks

Feasibility test

Synthetic utilization (improved definition):

If the processor becomes idle due to a task completing before
its deadline, the synthetic utilization can be immediately
reset to zero (since tasks that precede the idle time will
have no effect on the schedulability of future task arrivals.)

The synthetic utilization can therefore be redefined as:)(tU ζ

Uζ (t) =
Ci Di if the processor is busy

τ i∈V
ζ (t)∑

0 if the processor is idle

⎧
⎨
⎪

⎩⎪

The average synthetic utilization will thus generally be lower
than the average real utilization of admitted tasks

Some follow-up work:

Feasibility test

•  Multiprocessor scheduling of liquid tasks
–  Time-independent global multiprocessor scheduling
–  Independent liquid aperiodic tasks

•  Relaxation of the liquid task assumption
–  Time-independent uniprocessor scheduling
–  Generic aperiodic tasks with shared resources

•  Multiprocessor scheduling of generic tasks
–  Priority-driven global multiprocessor scheduling
–  Priority-driven partitioned multiprocessor scheduling
–  Independent generic aperiodic tasks

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #11
Updated May 2, 2015

4

Multiprocessor scheduling of liquid tasks: (Abdelzaher et al, 2002)

Feasibility test

•  Time-independent global multiprocessor scheduling
•  Deadline-monotonic scheduling is also optimal among

time-independent multiprocessor scheduling policies
•  Synthetic guarantee bound is identical to the uniprocessor

case, and is independent of the number of processors
•  Synthetic utilization is redefined as:

Uζ (t) =
1
m

Ci Di if all processors are busy
τ i∈V

ζ (t)∑
0 otherwise

⎧

⎨
⎪

⎩
⎪

Note that synthetic utilization
for multiprocessors is defined
as a per-processor average

Relaxation of liquid task assumption: (Abdelzaher & Sharma, 2003)

Feasibility test

•  Time-independent uniprocessor scheduling
•  Presents a generalized synthetic guarantee bound that is a

function of parameters that depend on the scheduling policy
used:

–  Preemptable deadline ratio
–  Resource blocking ratio

•  For deadline-monotonic scheduling, the synthetic guarantee
bound reduces to the optimal bound for liquid tasks

Relaxation of liquid task assumption:

Feasibility test

Let be the longest relative deadline among the tasks
with priority equal to or higher than task . kτ

kDmax

The preemptable deadline ratio is then defined as: α

α = min
∀k

Dk

Dmax
k

Note that for deadline-monotonic scheduling since
tasks with higher priorities have shorter deadlines.

1=α

Relaxation of liquid task assumption:

Feasibility test

The resource blocking ratio is then defined as: γ

γ = max
∀k

Bk
Dk

Let be the longest critical region being used by tasks
with a priority lower than task , and that calls critical
regions with a ceiling priority equal to or higher than the
priority of (that is, PCP is assumed).

kτ
kB

kτ

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #11
Updated May 2, 2015

5

Relaxation of liquid task assumption:

Feasibility test

The generalized synthetic guarantee bound for time-
independent uniprocessor scheduling is then defined as:

ULB
ζ

ULB
ζ = 1+α − 1+ γ +α 2

A sufficient condition for time-independent uniprocessor
scheduling of aperiodic tasks is thus:

Uζ (t) ≤1+α − 1+ γ +α 2

Relaxation of liquid task assumption:

Feasibility test

The bound for DM thus reduces to that of the liquid task case

For deadline-monotonic scheduling () of independent
tasks (), the guarantee bound evaluates to

1=α
0=γ

1+α − 1+ γ +α 2 = 2 − 2 =
2(1+ 1

2
)− 2(1+ 1

2
)

1+ 1
2

= 1

1+ 1
2

Multiprocessor scheduling of generic tasks: (Andersson et al, 2003)

Feasibility test

•  Global multiprocessor scheduling with m processors:
–  The EDF-US{m/(2m-1)} scheduling policy is extended to

handle aperiodic tasks
–  Added difficulty: the number of "heavy" tasks is not

necessarily the same at all times (as is the case with periodic
tasks) ⇒ the number of processors available for "light" tasks
may vary with time

–  It is shown that the aperiodic EDF-US{m/(2m-1)} has a
synthetic guarantee bound of at least m/(2m-1)

–  It is shown that no priority-driven global scheduler can have a
synthetic guarantee bound higher than 0.5 + 0.5/m

Global multiprocessor scheduling of aperiodic tasks:

Feasibility test

•  Priority-driven multiprocessor scheduling:
–  For every pair of tasks, one task has higher priority than the

other task in the pair, and these relative priority orderings
never change (i.e., not pfair scheduling)

•  Synthetic utilization is redefined as:

Uζ (t) =
1
m

Ci Di if ∃ a busy processor
τ i∈V

ζ (t)∑
0 otherwise

⎧
⎨
⎪

⎩⎪

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #11
Updated May 2, 2015

6

Feasibility test

•  A sufficient condition for global scheduling of aperiodic
tasks on m processors using EDF-US{m/(2m-1)} is

Uζ (t) ≤ m
2m −1

EDF-US{m/(2m-1)} thus has close-to-optimal performance (recall that
maximum achievable bound is 0.5+0.5/m). For an infinite number of
processors, EDF-US{m/(2m-1)} is optimal among priority-driven
global schedulers for aperiodic tasks.

Global multiprocessor scheduling of aperiodic tasks: Multiprocessor scheduling of generic tasks: (Andersson et al, 2003)

Feasibility test

•  Partitioned multiprocessor scheduling with m processors:
–  An EDF-FF scheduling policy is proposed to handle aperiodic

tasks

–  Added difficulty: a task "disappears" as soon as its deadline
has expired ⇒ "first-fit" bin-packing must be redefined

–  It is shown that the aperiodic EDF-FF scheduler has a
synthetic guarantee bound of at least 0.31

–  It is also shown that no analysis of guarantee bounds for the
aperiodic EDF-FF scheduler can achieve a guarantee bound
higher than 3/7 ≈ 0.428

Feasibility test

Partitioned multiprocessor scheduling of aperiodic tasks:

Vp
ζ (t) = τ i ai ≤ t ≤ ai + Di ∧ (τ i is assigned to processor p){ }

Up
ζ (t) = Ci

Diτ i∈Vp
ζ (t)
∑

The synthetic utilization on processor is defined as: p)(tU p
ζ

where

Uζ(t) = 1
m Ci Diτ i∈V

ζ (t)∑The total synthetic utilization is still

Feasibility test

Partitioned multiprocessor scheduling of aperiodic tasks:

A processor is said to be occupied at time if there is at least
one task that is both current at time and that is assigned
to the processor. A processor that is not occupied is called
empty.

t
t

Let be the latest time such that processor
 makes a transition from being empty to being occupied.
transitionp (t) ≤ t p

If a processor has never been occupied, then
transitionp (t) = −∞

p

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #11
Updated May 2, 2015

7

Feasibility test

Partitioned multiprocessor scheduling of aperiodic tasks:

When a task arrives it is assigned to the occupied processor
with the earliest for which

iτ
transitionp (ai)

Up
ζ (t) = Ck

Dk

≤ 1
τ k∈Vp

ζ (t)∪τ i
∑

If no occupied processor passes the test, the task is assigned
to an arbitrary empty processor (if no empty processor
exists, EDF-FF declares failure.)

The EDF-FF algorithm:

Feasibility test

•  A sufficient condition for partitioned scheduling of aperiodic
tasks on m processors using EDF-FF is

31.0)(≤tU ζ

EDF-FF thus has no tight guarantee bound (it is known from earlier
work that maximum achievable bound for partitioned multiprocessor
scheduling is 0.5). Recall, however, that no analysis of EDF-FF can
achieve a guarantee bound higher than 3/7.

Partitioned multiprocessor scheduling of aperiodic tasks:

Forwarding tasks in a multiprocessor system:
•  Immediate drop:

–  If an aperiodic task is not centrally schedulable, it is dropped.

•  Focused addressing and bidding:
–  If an aperiodic task is not locally schedulable, it is forwarded

to a suitable processor candidate based on statistics and bids.

•  Load sharing:
–  If an aperiodic task is not locally schedulable, it is forwarded

to a suitable processor candidate based on load thresholds
and ”buddy” processors.

Server-less approach

Focused addressing and bidding: (Ramamritham et al, 1989)

Task forwarding

•  Each processor maintains a table of currently-guaranteed
tasks. It also maintains a table of the surplus computational
capacity at every other processor. The surplus capacity is
expressed as fractions of a (future) time window of a
common size.

•  If a processor cannot guarantee an aperiodic task locally, it
consults its surplus table and selects the processor
(focused processor) that is most likely to successfully
schedule the task.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #11
Updated May 2, 2015

8

Focused addressing and bidding:

Task forwarding

•  Because of possible out-of-date entries in the surplus
table, the processor might also send out requests-for-bids
to other lightly-loaded processors. These bids are then
sent to the focused processor.

•  The focused processor determines whether to schedule
locally or pass the task on to the highest bidder. Tasks
that cannot be guaranteed locally, or through focused
addressing and bidding, are rejected.

Task forwarding

•  Important overhead factors that must be taken into
account during the bidding process:
–  task deadline and task execution time
–  task transfer time (between processors)
–  time taken by the focused processor to make a decision
–  time taken to respond with a bid (schedulability test)
–  surplus time available at bidder

Focused addressing and bidding:

Load sharing: (Shin & Chang, 1989)

•  Each processor has three states of processor loading:

–  Underloaded: the processor is judged to be in a position to
accept and execute tasks from other processors.

–  Fully loaded: the processor will neither accept tasks from other
processors, nor offload tasks onto other processors.

–  Overloaded: the processor looks for other processors on which
to offload some tasks.

•  The processor load is derived from the number of task
instances awaiting service in the processor’s ready queue

Task forwarding

Load sharing:

Task forwarding

•  To update processor state, the load is compared against
a set of load thresholds corresponding to the loading
states.

•  When a processor makes a transition into and out of the
underloaded state, it broadcasts an announcement to its
buddy set which is a limited subset of the processors
chosen mainly based on the nature of the
interconnection network.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2014/2015 Lecture #11
Updated May 2, 2015

9

Load sharing:

Task forwarding

•  Each processor is aware of whether any members in its
buddy set are in the underloaded state. An overloaded
processor chooses an underloaded member (if any) in
its buddy set on which to offload a task.

•  Each processor has an ordered list of preferred
processors. Careful design of the lists will reduce the
risk of “flooding” underloaded processors.

