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Handling (hard) aperiodic tasks on multiprocessors: 
1.  Feasibility test: 

–  Check whether an aperiodic task can be scheduled on the local 
processor (distributed arrival) or on any processor (centralized 
arrival) 

2.  Task forwarding: 
–  In case an aperiodic task cannot be scheduled locally, attempt 

to forward it to another processor. (distributed arrival only)  

Server-less approach 

Feasibility tests for aperiodic tasks: 

•  Requires a fast on-line algorithm 
–  Utilization-based tests are good candidates 

•  Requires a new concept of processor load 
–  Traditional load measures assume periodic tasks 

•  Requires a new view on task priorities 
–  Traditional views, such as static and dynamic, are based on 

periodic task models 
•  Requires support for multiprocessors 

–  Solutions needed for partitioned and global scheduling 

Server-less approach 
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Guarantee bound for liquid tasks: (Abdelzaher and Lu, 2001) 

Feasibility test 

•  Redefined the theory for schedulability analysis by … 
… assuming a liquid task model, where task computation times  

are in general much smaller than task deadlines (Ci << Di)  

… assuming a time-independent scheduling policy where task 
priorities do not depend on task arrival times (i.e. not EDF) 

… introducing the concept of synthetic utilization to account for 
individual task instances that are current at a given time 

… introducing a synthetic guarantee bound which, if not exceeded, 
guarantees that deadlines are met for all current task instances 

Guarantee bound for liquid tasks: 

Feasibility test 

•  For time-independent scheduling on a uniprocessor … 
… deadline-monotonic scheduling is optimal for liquid aperiodic 

tasks in the sense that it maximizes the guarantee bound 

… the guarantee bound is lower than the bound for rate-
monotonic scheduling of periodic tasks (by Liu & Layland) 

… the real utilization of admitted tasks can be much higher than 
the synthetic guarantee bound, often close to 100% ⇒ using 
the (seemingly low) bound will not underutilize the processor 

 (note that feasibility tests for periodic tasks do not exhibit such 
a property) 

Feasibility test 

Current tasks: 

•  In the example below, task     is current at time   , while 
tasks    and    are not. 

2τ
1τ 3τ

t

•  A task is said to be current at time   if it has arrived at or 
before   , but its deadline has not yet expired. 

t
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Feasibility test 

Synthetic utilization: 

Let           be the set of current tasks at time   , that is: tV ζ (t)

V ζ (t) = τ i ai ≤ t ≤ ai + Di{ }

The synthetic utilization            is then defined as: )(tU ζ

Uζ (t) = Ci

Diτ i∈V
ζ (t )
∑

Note that the synthetic utilization is a function of time! 
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Feasibility test 

Guarantee-bound analysis for liquid tasks: 
•  A sufficient condition for DM scheduling of liquid tasks is 

Uζ (t) ≤ 1
2
+ 1
2n

for n < 3

Uζ (t) ≤ 1

1+ 1
2
1− 1

n −1
⎛
⎝⎜

⎞
⎠⎟

for n ≥ 3

Feasibility test 

Guarantee-bound analysis for liquid tasks: 
•  A conservative lower bound on the utilization can be 

derived by letting  n→∞

  

lim
n→∞

1

1+ 1
2

1− 1
n−1

⎛
⎝⎜

⎞
⎠⎟

= 1

1+ 1
2

≈ 0.586

This bound is thus lower than the RM bound for periodic tasks  

Feasibility test 

Synthetic utilization (improved definition): 

If the processor becomes idle due to a task completing before 
its deadline, the synthetic utilization can be immediately 
reset to zero (since tasks that precede the idle time will 
have no effect on the schedulability of future task arrivals.) 

The synthetic utilization           can therefore be redefined as: )(tU ζ

Uζ (t) =
Ci Di if the processor is busy

τ i∈V
ζ (t )∑

0              if the processor is idle

⎧
⎨
⎪

⎩⎪

The average synthetic utilization will thus generally be lower 
than the average real utilization of admitted tasks 

Some follow-up work: 

Feasibility test 

•  Multiprocessor scheduling of liquid tasks 
–  Time-independent global multiprocessor scheduling 
–  Independent liquid aperiodic tasks 

•  Relaxation of the liquid task assumption 
–  Time-independent uniprocessor scheduling 
–  Generic aperiodic tasks with shared resources 

•  Multiprocessor scheduling of generic tasks 
–  Priority-driven global multiprocessor scheduling 
–  Priority-driven partitioned multiprocessor scheduling 
–  Independent generic aperiodic tasks 
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Multiprocessor scheduling of liquid tasks: (Abdelzaher et al, 2002) 

Feasibility test 

•  Time-independent global multiprocessor scheduling 
•  Deadline-monotonic scheduling is also optimal among 

time-independent multiprocessor scheduling policies 
•  Synthetic guarantee bound is identical to the uniprocessor 

case, and is independent of the number of processors 
•  Synthetic utilization is redefined as: 

Uζ (t) =
1
m

Ci Di if all processors are busy
τ i∈V

ζ (t )∑
0 otherwise

⎧

⎨
⎪

⎩
⎪

Note that synthetic utilization 
for multiprocessors is defined 
as a per-processor average 

Relaxation of liquid task assumption: (Abdelzaher & Sharma, 2003) 

Feasibility test 

•  Time-independent uniprocessor scheduling 
•  Presents a generalized synthetic guarantee bound that is a 

function of parameters that depend on the scheduling policy 
used: 

–  Preemptable deadline ratio 
–  Resource blocking ratio 

•  For deadline-monotonic scheduling, the synthetic guarantee 
bound reduces to the optimal bound for liquid tasks 

Relaxation of liquid task assumption: 

Feasibility test 

Let        be the longest relative deadline among the tasks 
with priority equal to or higher than task    . kτ

kDmax

The preemptable deadline ratio    is then defined as: α

α = min
∀k

Dk

Dmax
k

Note that          for deadline-monotonic scheduling since 
tasks with higher priorities have shorter deadlines. 

1=α

Relaxation of liquid task assumption: 

Feasibility test 

The resource blocking ratio    is then defined as: γ

γ = max
∀k

Bk
Dk

Let      be the longest critical region being used by tasks  
with a priority lower than task    , and that calls critical 
regions with a ceiling priority equal to or higher than the 
priority of     (that is, PCP is assumed). 

kτ
kB

kτ
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Relaxation of liquid task assumption: 

Feasibility test 

The generalized synthetic guarantee bound       for time-
independent uniprocessor scheduling is then defined as: 

ULB
ζ

ULB
ζ = 1+α − 1+ γ +α 2

A sufficient condition for time-independent uniprocessor 
scheduling of aperiodic tasks is thus: 

Uζ (t) ≤1+α − 1+ γ +α 2

Relaxation of liquid task assumption: 

Feasibility test 

The bound for DM thus reduces to that of the liquid task case  

For deadline-monotonic scheduling (       ) of independent 
tasks (        ), the guarantee bound evaluates to 

1=α
0=γ

1+α − 1+ γ +α 2 = 2 − 2 =
2(1+ 1

2
)− 2(1+ 1

2
)

1+ 1
2

= 1

1+ 1
2

Multiprocessor scheduling of generic tasks: (Andersson et al, 2003) 

Feasibility test 

•  Global multiprocessor scheduling with m processors: 
–  The EDF-US{m/(2m-1)} scheduling policy is extended to 

handle aperiodic tasks 
–  Added difficulty: the number of "heavy" tasks is not 

necessarily the same at all times (as is the case with periodic 
tasks) ⇒ the number of processors available for "light" tasks 
may vary with time 

–  It is shown that the aperiodic EDF-US{m/(2m-1)} has a 
synthetic guarantee bound of at least m/(2m-1) 

–  It is shown that no priority-driven global scheduler can have a 
synthetic guarantee bound higher than 0.5 + 0.5/m 

Global multiprocessor scheduling of aperiodic tasks: 

Feasibility test 

•  Priority-driven multiprocessor scheduling: 
–  For every pair of tasks, one task has higher priority than the 

other task in the pair, and these relative priority orderings 
never change (i.e., not pfair scheduling) 

•  Synthetic utilization is redefined as: 

Uζ (t) =
1
m

Ci Di if ∃ a busy processor
τ i∈V

ζ (t )∑
0                 otherwise

⎧
⎨
⎪

⎩⎪
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Feasibility test 

•  A sufficient condition for global scheduling of aperiodic 
tasks on m processors using EDF-US{m/(2m-1)} is 

Uζ (t) ≤ m
2m −1

EDF-US{m/(2m-1)} thus has close-to-optimal performance (recall that 
maximum achievable bound is 0.5+0.5/m). For an infinite number of 
processors, EDF-US{m/(2m-1)} is optimal among priority-driven 
global schedulers for aperiodic tasks. 

Global multiprocessor scheduling of aperiodic tasks: Multiprocessor scheduling of generic tasks: (Andersson et al, 2003) 

Feasibility test 

•  Partitioned multiprocessor scheduling with m processors: 
–  An EDF-FF scheduling policy is proposed to handle aperiodic 

tasks 

–  Added difficulty: a task "disappears" as soon as its deadline 
has expired ⇒ "first-fit" bin-packing must be redefined 

–  It is shown that the aperiodic EDF-FF scheduler has a 
synthetic guarantee bound of at least 0.31  

–  It is also shown that no analysis of guarantee bounds for the 
aperiodic EDF-FF scheduler can achieve a guarantee bound 
higher than 3/7 ≈ 0.428  

Feasibility test 

Partitioned multiprocessor scheduling of aperiodic tasks: 

Vp
ζ (t) = τ i ai ≤ t ≤ ai + Di ∧ (τ i  is assigned to processor p){ }

Up
ζ (t) = Ci

Diτ i∈Vp
ζ (t )
∑

The synthetic utilization           on processor    is defined as: p)(tU p
ζ

where 

Uζ(t) = 1
m Ci Diτ i∈V

ζ (t )∑The total synthetic utilization is still 

Feasibility test 

Partitioned multiprocessor scheduling of aperiodic tasks: 

A processor is said to be occupied at time   if there is at least 
one task that is both current at time   and that is assigned 
to the processor. A processor that is not occupied is called 
empty. 

t
t

Let                      be the latest time      such that processor 
    makes a transition from being empty to being occupied. 
transitionp (t) ≤ t p

If a processor    has never been occupied, then  
transitionp (t) = −∞

p
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Feasibility test 

Partitioned multiprocessor scheduling of aperiodic tasks: 

When a task    arrives it is assigned to the occupied processor 
with the earliest                        for which 

iτ
transitionp (ai )

Up
ζ (t) = Ck

Dk

≤ 1
τ k∈Vp

ζ (t )∪τ i
∑

If no occupied processor passes the test, the task is assigned 
to an arbitrary empty processor (if no empty processor 
exists, EDF-FF declares failure.) 

The EDF-FF algorithm: 

Feasibility test 

•  A sufficient condition for partitioned scheduling of aperiodic 
tasks on m processors using EDF-FF is 

31.0)( ≤tU ζ

EDF-FF thus has no tight guarantee bound (it is known from earlier 
work that maximum achievable bound for partitioned multiprocessor 
scheduling is 0.5). Recall, however, that no analysis of EDF-FF can 
achieve a guarantee bound higher than 3/7. 

Partitioned multiprocessor scheduling of aperiodic tasks: 

Forwarding tasks in a multiprocessor system: 
•  Immediate drop: 

–  If an aperiodic task is not centrally schedulable, it is dropped. 

•  Focused addressing and bidding: 
–  If an aperiodic task is not locally schedulable, it is forwarded 

to a suitable processor candidate based on statistics and bids. 

•  Load sharing: 
–  If an aperiodic task is not locally schedulable, it is forwarded 

to a suitable processor candidate based on load thresholds 
and ”buddy” processors. 

Server-less approach 

Focused addressing and bidding: (Ramamritham et al, 1989) 

Task forwarding 

•  Each processor maintains a table of currently-guaranteed 
tasks. It also maintains a table of the surplus computational 
capacity at every other processor. The surplus capacity is 
expressed as fractions of a (future) time window of a 
common size. 

•  If a processor cannot guarantee an aperiodic task locally, it 
consults its surplus table and selects the processor 
(focused processor) that is most likely to successfully 
schedule the task. 
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Focused addressing and bidding: 

Task forwarding 

•  Because of possible out-of-date entries in the surplus 
table, the processor might also send out requests-for-bids 
to other lightly-loaded processors. These bids are then 
sent to the focused processor. 

•  The focused processor determines whether to schedule 
locally or pass the task on to the highest bidder. Tasks 
that cannot be guaranteed locally, or through focused 
addressing and bidding, are rejected. 

Task forwarding 

•  Important overhead factors that must be taken into 
account during the bidding process: 
–  task deadline and task execution time 
–  task transfer time (between processors) 
–  time taken by the focused processor to make a decision 
–  time taken to respond with a bid (schedulability test) 
–  surplus time available at bidder 

 
 

Focused addressing and bidding: 

Load sharing: (Shin & Chang, 1989) 
 
•  Each processor has three states of processor loading: 

–  Underloaded: the processor is judged to be in a position to 
accept and execute tasks from other processors. 

–  Fully loaded: the processor will neither accept tasks from other 
processors, nor offload tasks onto other processors. 

–  Overloaded: the processor looks for other processors on which 
to offload some tasks. 

•  The processor load is derived from the number of task 
instances awaiting service in the processor’s ready queue 

Task forwarding 

Load sharing: 

Task forwarding 

•  To update processor state, the load is compared against 
a set of load thresholds corresponding to the loading 
states. 

•  When a processor makes a transition into and out of the 
underloaded state, it broadcasts an announcement to its 
buddy set which is a limited subset of the processors 
chosen mainly based on the nature of the 
interconnection network. 
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Load sharing: 

Task forwarding 

•  Each processor is aware of whether any members in its 
buddy set are in the underloaded state. An overloaded 
processor chooses an underloaded member (if any) in 
its buddy set on which to offload a task. 

•  Each processor has an ordered list of preferred 
processors. Careful design of the lists will reduce the 
risk of “flooding” underloaded processors. 


