Parallel & Distributed Real-Time Systems

Lecture #12

Professor Jan Jonsson
Department of Computer Science and Engineering
Chalmers University of Technology

Administrative issues

This week’s schedule:
• Only one lecture (Monday)
• No lectures or consultation sessions on Thursday
• Presentation time slots on Monday, Wednesday and Thursday

Next week’s schedule:
• Guest lecture on Thursday, May 21 @ 08:00
 - Industrial communication networks (Dr. Roger Johansson, Chalmers)
• Regular lecture on Thursday, May 21 @ 10:00
• Consultation sessions on Monday and Friday
• Presentation time slots on Monday and Thursday

Network communication

Hardware platform

Network communication

message delay

message
Message delay:

- Formatting (packetizing) the message
- Queuing the message, while waiting for access to medium
- Transmitting the message on the medium
- Notifying the receiver of message arrival
- Deformatting (depacketizing) the message

Formatting/deformatting overheads are typically included in the execution time of the sending/receiving task.

Transmission delay:

- The delay for transmitting the message is a function of:
 - Message length (bits)
 - Data rate (bits/s)
 - Communication distance (m)
 - Signal propagation velocity (m/s)

\[t_{\text{trans}} = \frac{N_{\text{trans}}}{R} \]

\[t_{\text{prop}} = \frac{L}{v} \]

Queuing delay:

- The queuing delay for a task is caused by:
 - Waiting for a corresponding time slot (TTP/C, FlexRay)
 - Waiting for a transmission token (Token Ring, FDDI)
 - Waiting for a contention-free transmission (Ethernet)
 - Waiting for network priority negotiation (CAN)
 - Waiting for removal from priority queue (Switched Ethernet, EDD-O)

How is the message transfer scheduled between tasks assigned to different processors?

- Integrated scheduling:
 - Scheduling of tasks and inter-task communication are regarded as comparable operations.
 - Requires compatible dispatching strategies.

- Separated scheduling:
 - Scheduling of tasks and inter-task communication are performed as separate steps.
 - Allows for different dispatching strategies.
Network communication

Integrated scheduling:
- Suitable for simple homogeneous systems with known assignment of tasks to processors
- Examples:
 - Time-driven task dispatching + TTP/C network protocol
 - Static-priority task dispatching + CAN protocol
 - Static-priority task dispatching + Token Ring network protocol

Separated scheduling:
- Suitable for heterogeneous systems or when assignment of tasks to processors is not always known in advance
- Motivation:
 - Transmission delay is zero if communicating tasks are assigned to the same processor
 - Number of communication links that a message traverses may be a function of the assignment (depends on topology and routing strategy)
 - Different communication links may employ different message dispatching policies

Network communication

How is the message transfer synchronized between communicating tasks?
- Asynchronous communication:
 - Sending and reception of messages are performed as independent operations at run-time.
- Synchronous communication:
 - Sending and receiving tasks synchronize their network medium access at run-time.

Asynchronous communication
- Implementation:
 - Network controller chip administrates message transmission and reception (example: CAN, Ethernet)
 - Interrupt handler notifies the receiver
- Release jitter:
 - Queuing delays (at sender or in multi-hop network switches) and notification delay cause variations in message arrival time
 - Arrival-time variations gives rise to release jitter at receiving task (which may negatively affect schedulability)
 - Release jitter is minimized by using offsets for receiving tasks, or by maintaining message periodicity in multi-hop networks
Network communication

Asynchronous communication:

- Release jitter
- Queuing delay
- Transmission delay
- Notification delay

\[T_1, T_2, \tau_1, \tau_2 \]

Synchronous communication

- Implementation:
 - Network controller chip makes sure message transmission and reception occurs within a dedicated time slot in a TDMA bus network
 - Off-line static scheduling is used for matching the time slot with the execution of sending and receiving tasks
 - Queuing and notification delays can be kept to a minimum by instructing the off-line scheduling algorithm to use jitter minimization as the scheduling objective

Network communication

How is the message transfer imposed with a deadline?

- As a separate schedulable entity:
 - Suitable deadline-assignment techniques must be used
 - Worst-case message delay must be known beforehand
- As part of the receiving task:
 - No explicit deadline needed for message transmission
 - May impose release jitter on the receiving task
Network communication

How is the message transferred onto the medium?

- **Contention-free communication:**
 - Senders need not contend for medium access at run-time
 - Examples: TTP/C, FlexRay, Switched Ethernet

- **Token-based communication:**
 - Each sender using the medium gets one chance to send its messages, based on a predetermined order
 - Examples: Token Ring, FDDI

- **Collision-based communication:**
 - Senders may have to contend for the medium at run-time
 - Examples: Ethernet, CAN

The TTCAN protocol

- Based on the CAN protocol
- Bus topology
- Media: twisted pair
- 1Mbit/s

A second controller is required to implement the redundant bus

Network communication

Contention-free communication:

- One or more dedicated time slots for each task/processor
 - Shared communication bus
 - Medium access is divided into communication cycles (normally related to task hyper periods to allow for integrated scheduling)
 - Dedicated time slots provide bounded message queuing delays
 - TTP/C, TTCAN ("exclusive mode"), FlexRay ("static segment")

- One sender only for each communication line
 - Point-to-point communication networks with link switches
 - Output and input buffers with deterministic queuing policies in switches provide bounded message queuing delays
 - Switched Ethernet, EDD-D, Network Calculus

The TTCAN protocol

- Based on the CAN protocol
- Bus topology
- Media: twisted pair
- 1Mbit/s

"Exclusive" – guaranteed service
"Arbitration" – guaranteed service (high ID), best effort (low ID)
"Reserved" – for future expansion...

Time is global and measured in network time units (NTU’s)
The TTP/C protocol

- Double channels (one redundant). Bus topology or “star” (optical)
- Media: twisted pair, fibre
- 10 Mbit/s for each channel

A network is built on either twin buses or twin stars.

The TTP/C protocol

All communication is statically scheduled
Guaranteed service

“TDMA-round”

“message slots”

Non-periodic messages have to be fitted into static slots by the application

The FlexRay protocol

- Double channels, bus or star (even mixed)
- Media: twisted pair, fibre
- 10 Mbit/s for each channel

Redundant channel can be used for an alternative schedule

The FlexRay protocol

“Static segment” (compare w/ TTCAN “Exclusive”)
- guaranteed service

“Dynamic segment” (compare w/ TTCAN “Arbitration”)
- guaranteed service (high ID), “best effort” (low ID)

Max 64 nodes on a Flexray network.
Token-based communication

Timed-Token Protocol: (Malcolm & Zhao, 1994)

- Concepts:
 - By token rotation (TR) we mean that the token has made a complete cycle among all the processor nodes.
 - The token cycle time is the \textit{real} value of the time taken for TR.
 - The target token-rotation time (TTRT) is an \textit{expected} value of the time taken for TR.

- Protocol:
 - Every time the token visits a processor node, it is allowed to transmit up to a pre-assigned quota of real-time messages.
 - At token reception, token cycle time is compared against TTRT:
 - if token is late, only real-time messages are transmitted
 - if token is early, non-real-time messages are also transmitted

Timed-Token Protocol:

A necessary feasibility test:
The deadline of each message transmission must be at least twice the TTRT.

A sufficient feasibility test:
The accumulated transmission quotas should not exceed TTRT minus the overhead for token transmission time.

Token Ring: (IEEE 802.5)

- The deadline of each message transmission must be at least twice the TTRT.
- The accumulated transmission quotas should not exceed TTRT minus the overhead for token transmission time.
Token Ring message frame format:

<table>
<thead>
<tr>
<th>PPP</th>
<th>T</th>
<th>M</th>
<th>RRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>ED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PPP: priority field
RRR: reservation field

Token Ring protocol:

1. Each node examines RRR of a busy token as it passes and inserts the priority of its pending message only if it is greater than the priority currently in RRR.
2. A node does not grab a "free" token unless the priority of its pending message is at least as high as the priority in PPP. Then the token status is changed to "busy".
3. A transmitting node appends its pending message after the "busy" token and sets RRR appropriately.
4. A transmitting node waits until it receives back the "busy" token before releasing the next "free" token with PPP set to the (possibly) updated RRR.

Token Ring real-time protocol: (Sathaye & Strosnider, 1994)

The rate-monotonic (RM) scheduling algorithm can be adapted to the Token Ring protocol by assuming a non-preemptive dispatching model.

- Limitations:
 - Messages cannot be interrupted during transmission, which means that message scheduling is non-preemptive.
 - Message headers must be included in message size
 - Notion of highest priority might be outdated since the system is distributed
 - The number of priority bits (3) defined in IEEE 802.5 does not allow for an arbitrary number of priority levels.

A sufficient and necessary feasibility test:

∀i : \(R_i = t_{\text{sys}} + b_i + \sum_{j=1}^m \frac{R_j}{T_j} e_j \leq D_i \)

- \(t_{\text{sys}} \): system overhead defined by the system
- \(b_i \): blocking time due to ongoing transmissions
- \(e_j \): "execution time" consisting of the following time components
 - Capture token when node has highest-priority message pending
 - Transmit message
 - Transmit subsequent free token
Collision-based communication:

- Utilize collision-detect mechanism to determine validity of message transmissions on a shared medium
 - The sender tries to send messages independently of other senders’ intention to do so
 - Attempts may be done at any time or when some specific network state occurs
- Examples:
 - Ethernet w/ multiple senders (IEEE 802.3)
 - CAN (ISO 11898)

Ethernet protocols w/ multiple senders:

- Senders attempt to send a complete message
- If messages collide, all transmissions are aborted
- After collision, re-transmission is made after a random delay

Protocol extensions for real-time systems:

- VTCSMA (Zhao & Ramamritham, 1987)
- Window Protocol (Zhao, Stankovic & Ramamritham, 1990)

Message queuing delay can in general not be bounded!
Therefore, these protocols do not give any guarantees for meeting imposed message deadlines!
Collision-based communication

CAN message frame format: (short format)

SOF 11-bit identifier control 0-8 bytes of message data error control Ack EOF

11-bit identifier is used for two purposes:
- assign a priority to the message (low number ⇒ high priority)
- enable receiver to filter messages

Wired-AND:
Each node monitors the bus while transmitting.
If multiple nodes are transmitting simultaneously and one node transmits a ‘0’, then all nodes will see a ‘0’. If all nodes transmit a ‘1’, then all nodes will see a ‘1’.

Collision-based communication

CAN protocol: (binary countdown)

1. Each node with a pending message waits until bus is idle.
2. The node begins transmitting the highest-priority message pending on the node. Identifier is transmitted first, in the order of most-significant bit to least-significant bit.
3. If a node transmits a recessive bit (‘1’) but sees a dominant bit (‘0’) on the bus, then it stops transmitting since it is not transmitting the highest-priority message in the system.
4. The node that transmits the last bit of its identifier without detecting a bus inconsistency has the highest priority and can start transmitting the body of the message.

Collision-based communication

CAN real-time protocols:
- Protocol #1: (Davis et al., 2007)
 - Any fixed-priority scheduling algorithm can be adapted to the CAN protocol by assuming non-preemptive dispatching.
- Protocol #2: (Zuberi & Shin, 1995)
 - The earliest-deadline-first (EDF) and deadline-monotonic (DM) scheduling algorithms can also be adapted to the CAN protocol by appropriately partitioning the identifier field.

Additional reading:
Study the paper by Davis et al. (2007).