
Binary heaps
(chapters 20.3 – 20.5)

Leftist heaps



  

Binary heaps are arrays!

A binary heap is really implemented 
using an array! 8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

Possible because
of completeness

property



  

Child positions
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Parent position
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Reminder: inserting into a binary heap

To insert an element into a binary heap:
● Add the new element at the end of the heap
● Sift the element up: while the element is less 

than its parent, swap it with its parent

We can do exactly the same thing for a 
binary heap represented as an array!



  

Inserting into a binary heap

Step 1: add the new element to the end of 
the array, set child to its index
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Inserting into a binary heap

Step 2: compute parent = (child-1)/2
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Inserting into a binary heap

Step 3: if array[parent] > array[child], 
swap them
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Inserting into a binary heap

Step 4: set child = parent, parent = 
(child  1) / 2– , and repeat
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Inserting into a binary heap

Step 4: set child = parent, parent = 
(child  1) / 2– , and repeat
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Binary heaps as arrays

Binary heaps are “morally” trees
● This is how we view them when we design the 

heap algorithms

But we implement the tree as an array
● The actual implementation translates these tree 

concepts to use arrays

When you see a binary heap shown as a 
tree, you should also keep the array view 
in your head (and vice versa!)



  

Building a heap

One more operation, build heap
● Takes an arbitrary array and makes it into a heap
● In-place: moves the elements around to make the 

heap property hold

Idea: use sifting down (see next slide)
● Sift down each node, starting at the leaves and 

working up to the root
● By the time we sift down a node, its children will 

already be heaps
● Sifting down makes the node itself into a heap



  

Building a heap

Go through elements in reverse order, 
sifting each down
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Building a heap

Leaves never need sifting down!
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Subtrees which
are already a heap

are coloured yellow



  

Building a heap

Sift down 29: swap it with 18
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Building a heap
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Building a heap

Sift down 32: swap it with 18
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Building a heap
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Building a heap

Swap 37 and 20
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Building a heap

Swap 28 and 6
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Build heap complexity

You would expect O(n log n) complexity:
● n “sift down” operations
● each sift down has O(log n) complexity because 

the height of the tree is at most log n

Actually, it's O(n)! See book 20.3.
● (Rough reason: sifting down is most expensive 

for elements near the root of the tree, but the 
vast majority of elements are near the leaves)



  

Heapsort

To sort a list using a heap:
● start with an empty heap
● add all the list elements in turn
● repeatedly find and remove the smallest element 

from the heap, and add it to the result list

(this is a kind of selection sort)
However, this algorithm is not in-place. 
Heapsort uses the same idea, but without 
allocating any extra memory.



  

Heapsort, in-place

We're going to use a max heap
● This is a heap where you can find and delete the 

maximum element instead of the minimum
● Implementation is exactly the same as a normal 

(min) heap, just the order of all comparisons is 
reversed

Step 1: turn the array into a max heap, 
in-place
● using build heap algorithm

Step 2: let's see!



  

Idea of heapsort

89

76 74

37 32 39 66

20 26 18 28 29 6

Here is our max heap.
Bear in mind that it is really an array!

Let's do delete
maximum.



  

Idea of heapsort
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We've deleted 89. The array is now one 
element shorter.



  

Idea of heapsort
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There's an unused space at the end of the 
array, let's put 89 there!



  

Idea of heapsort
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Next step: delete maximum again.



  

Idea of heapsort

74

37 66

26 32 39 29
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Again there's an empty space, let's put 76 
there!



  

Idea of heapsort
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Heapsort – summary

Take an array
Step 1: turn it into a max heap, in-place
Step 2:
● Delete the maximum element
● Put that element in the newly-available space at 

the end of the array

Repeat until heap is empty!



  

Complexity of heapsort

Building the heap takes O(n) time
We delete the maximum element n times, 
each deletion taking O(log n) time
Hence the total complexity is O(n log n)



  

Warning

Our formulas for finding children and parents 
in the array assume 0-based arrays
The book, for some reason, uses 1-based 
arrays (and later switches to 0-based arrays)!
In a heap implemented using a 1-based array:
● the left child of index i is index 2i
● the right child is index 2i+1
● the parent is index i/2

Be careful when doing the lab!



  

Summary of binary heaps

Binary heaps: O(log n) insert, O(1) find 
minimum, O(log n) delete minimum
● A complete binary tree with the heap property, 

represented as an array

Heapsort: in place sorting algorithm 
based on heaps, takes O(n log n) time
In fact, heaps were originally invented for 
heapsort!



  

Leftist heaps



  

Merging two heaps

Another operation we might want to do is merge 
two heaps
● Build a new heap with the contents of both heaps
● e.g., merging a heap containing 1, 2, 8, 9, 10 and a heap 

containing 3, 4, 5, 6, 7 gives a heap containing 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10

For our earlier naïve priority queues:
● An unsorted array: concatenate the arrays
● A sorted array: merge the arrays (as in mergesort)

For binary heaps:
● Takes O(n) time because you need to at least copy the 

contents of one heap to the other

Can't combine two arrays in less than O(n) time!



  

Merging tree-based heaps

Go back to our idea of a binary tree with 
the heap property:

If we can merge two of these trees, we 
can implement insertion and delete 
minimum!
(We'll see how to implement merge later)
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Insertion

To insert a single element:
● build a heap containing just that one element
● merge it into the existing heap!

E.g., inserting 12
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37 32 74 89

20 28 39 66

+ 12

A tree with
just one node



  

Delete minimum

To delete the minimum element:
● take the left and right branches of the tree
● these contain every element except the smallest
● merge them!

E.g., deleting 8 from the previous heap
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Heaps based on merging

If we can take trees with the heap property, 
and implement merging with O(log n) 
complexity, we get a priority queue with:
● O(1) find minimum
● O(log n) insertion (by merging)
● O(log n) delete minimum (by merging)
● plus this useful merge operation itself

There are lots of heaps based on this idea:
● skew heaps, Fibonacci heaps, binomial heaps

We will study one: leftist heaps



  

 

Naive merging

1. Look at the roots of the two trees

We are going to pick the smaller one as 
the root of the new tree
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Naive merging

2. Recursively merge the right branch and 
the second tree
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Performance of naïve merging

The merge algorithm descends down the right 
branch of both trees
So the runtime depends on how many times you 
can follow the right branch before you get to the 
end of the tree
● Let's call this the right null path length

Complexity: O(m+n)
● where m and n are the right null path lengths of the 

two trees

Logarithmic complexity for balanced trees, but 
linear if the trees are heavily “right-biased”



  

Worst case for naïve merging

A heavily right-biased tree:



  

Leftist heaps – observation

Naive merging is:
● bad (linear complexity) for right-biased trees
● good (logarithmic or better) for other trees

Idea of leftist heaps:
● Add an invariant that stops the tree becoming 

right-biased
● In other words, by repeatedly following the right 

branch, you quickly reach the end of the tree



  

Null path length

We define the null path length (npl) of a node to be 
the shortest path that leads to the end of the tree (a 
null in Java)

The null path length of null itself is 0
Similar concept to height, but with height we 
measure the longest path in the tree
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Leftist heaps

Leftist invariant: the npl of the left child 
≥ the npl of the right child

This means: the quickest way to reach a 
null is to follow the right branch
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Leftist merging

We start with the naïve merging algorithm 
from earlier:
● The leftist invariant means that naïve merging stops 

after O(log n) steps

But the merge might break the leftist 
invariant!
● When we descend into the right child, its npl might 

increase, and become greater than the left child

Fix it by:
● Going upwards in the tree from where the merge 

finished, and wherever we encounter a node where left 
child's npl < right child's npl, swap the two children!



  

Leftist merging

1. Start with naïve merging from earlier
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Leftist merging

2. The recursion “bottomed out” at 66 
here
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Leftist merging

3. Go up to the parent, compare left and 
right child's npl
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Invariant broken!
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Leftist merging

4. If the leftist invariant is broken, swap 
the left and right children
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Leftist merging

5. Go up again and repeat!
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Leftist merging

5. Go up again and repeat!
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Leftist merging

5. Go up again and repeat!

18

2937

31

74 89

20

39

66

28

32

left npl: 2
right npl: 2

OK!
37



  

Leftist merging

6. When we've reached the root, we've 
finished!

Notice how the final heap “leans to the 
left”.
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Implementation

Implementation:
● Need to be able to compute npl efficiently
● Add a field for the npl to each node, and update it 

whenever we modify the node
● Update by computing: npl = 1 + right child's npl



  

Complexity of leftist merging

I claim: the npl of a tree of size n is O(log n)
● Check it for yourself :)
● For balanced trees, the npl is O(log n), much like height
● By unbalancing a tree, we make some paths longer, and 

some shorter. This increases the height, but decreases 
the npl!

Hence, in a leftist heap, by following the right 
branch O(log n) times, you reach a null
So merge takes O(log n) time!
● log n steps down the tree to do the naïve tree
● then log n steps upwards while repairing the leftist 

invariant



  

Leftist heaps

Implementation of priority queues:
● binary trees with heap property
● leftist invariant for O(log n) merging
● other operations are based on merge

A good fit for functional languages:
● based on trees rather than arrays
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