
Binary heaps
(chapters 20.3 – 20.5)

Leftist heaps

Binary heaps are arrays!

A binary heap is really implemented
using an array! 8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

Possible because
of completeness

property

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

Pa
re

n
t

L. C
h
ild

R
. C

h
il d

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

Pa
re

n
t

L. C
h
ild

R
. C

h
il d

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Pa
re

n
t

L. C
h
ild

R
. C

h
il d

Parent position

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
8 18 29 20 28 39 66 37 26 76 32 74 89

The parent of node i
is at index (i-1)/2

Pa
re

n
t

C
h
ild

Reminder: inserting into a binary heap

To insert an element into a binary heap:
● Add the new element at the end of the heap
● Sift the element up: while the element is less

than its parent, swap it with its parent

We can do exactly the same thing for a
binary heap represented as an array!

Inserting into a binary heap

Step 1: add the new element to the end of
the array, set child to its index

6

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
6 18 29 20 28 39 66 37 26 76 32 74 89

13
8

C
h
ild

8

Inserting into a binary heap

Step 2: compute parent = (child-1)/2
6

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6
6 18 29 20 28 39 66 37 26 76 32 74 89

13
8

C
h
ild

Pa
re

n
t

8

Inserting into a binary heap

Step 3: if array[parent] > array[child],
swap them

6

18 29

37 26 76 32 74 89

20 28 39 8

0 1 2 7 8 9 10 11 123 4 5 6
6 18 29 20 28 39 8 37 26 76 32 74 89

13
66

C
h
ild

Pa
re

n
t

66

Inserting into a binary heap

Step 4: set child = parent, parent =
(child 1) / 2– , and repeat

6

18 29

37 26 76 32 74 89

20 28 39 8

0 1 2 7 8 9 10 11 123 4 5 6
6 18 29 20 28 39 8 37 26 76 32 74 89

13
66

66C
h

ild

Pa
re

n
t

Inserting into a binary heap

Step 4: set child = parent, parent =
(child 1) / 2– , and repeat

6

18 8

37 26 76 32 74 89

20 28 39 29

0 1 2 7 8 9 10 11 123 4 5 6
6 18 8 20 28 39 29 37 26 76 32 74 89

13
66

66C
h

ild

Pa
re

n
t

Binary heaps as arrays

Binary heaps are “morally” trees
● This is how we view them when we design the

heap algorithms

But we implement the tree as an array
● The actual implementation translates these tree

concepts to use arrays

When you see a binary heap shown as a
tree, you should also keep the array view
in your head (and vice versa!)

Building a heap

One more operation, build heap
● Takes an arbitrary array and makes it into a heap
● In-place: moves the elements around to make the

heap property hold

Idea: use sifting down (see next slide)
● Sift down each node, starting at the leaves and

working up to the root
● By the time we sift down a node, its children will

already be heaps
● Sifting down makes the node itself into a heap

Building a heap

Go through elements in reverse order,
sifting each down

25

13 28

37 32 29 6

20 26 18 28 31 18

Building a heap

Leaves never need sifting down!

25

13 28

37 32 29 6

20 26 18 28 31 18

Subtrees which
are already a heap

are coloured yellow

Building a heap

Sift down 29: swap it with 18

25

13 28

37 32 29 6

20 26 18 28 31 18

Building a heap

25

13 28

37 32 18 6

20 26 18 28 31 29

Building a heap

Sift down 32: swap it with 18

25

13 28

37 32 18 6

20 26 18 28 31 29

Building a heap

25

13 28

37 18 18 6

20 26 32 28 31 29

Building a heap

Swap 37 and 20

25

13 28

20 18 18 6

37 26 32 28 31 29

Building a heap

Swap 28 and 6

25

13 6

20 18 18 28

37 26 32 28 31 29

Build heap complexity

You would expect O(n log n) complexity:
● n “sift down” operations
● each sift down has O(log n) complexity because

the height of the tree is at most log n

Actually, it's O(n)! See book 20.3.
● (Rough reason: sifting down is most expensive

for elements near the root of the tree, but the
vast majority of elements are near the leaves)

Heapsort

To sort a list using a heap:
● start with an empty heap
● add all the list elements in turn
● repeatedly find and remove the smallest element

from the heap, and add it to the result list

(this is a kind of selection sort)
However, this algorithm is not in-place.
Heapsort uses the same idea, but without
allocating any extra memory.

Heapsort, in-place

We're going to use a max heap
● This is a heap where you can find and delete the

maximum element instead of the minimum
● Implementation is exactly the same as a normal

(min) heap, just the order of all comparisons is
reversed

Step 1: turn the array into a max heap,
in-place
● using build heap algorithm

Step 2: let's see!

Idea of heapsort

89

76 74

37 32 39 66

20 26 18 28 29 6

Here is our max heap.
Bear in mind that it is really an array!

Let's do delete
maximum.

Idea of heapsort

76

37 74

26 32 39 66

20 6 18 28 29

We've deleted 89. The array is now one
element shorter.

Idea of heapsort

76

37 74

26 32 39 66

20 6 18 28 29 89

There's an unused space at the end of the
array, let's put 89 there!

Idea of heapsort

76

37 74

26 32 39 66

20 6 18 28 29 89

Next step: delete maximum again.

Idea of heapsort

74

37 66

26 32 39 29

20 6 18 28 89

Again there's an empty space, let's put 76
there!

Idea of heapsort

74

37 66

26 32 39 29

20 6 18 28 76 89

Heapsort – summary

Take an array
Step 1: turn it into a max heap, in-place
Step 2:
● Delete the maximum element
● Put that element in the newly-available space at

the end of the array

Repeat until heap is empty!

Complexity of heapsort

Building the heap takes O(n) time
We delete the maximum element n times,
each deletion taking O(log n) time
Hence the total complexity is O(n log n)

Warning

Our formulas for finding children and parents
in the array assume 0-based arrays
The book, for some reason, uses 1-based
arrays (and later switches to 0-based arrays)!
In a heap implemented using a 1-based array:
● the left child of index i is index 2i
● the right child is index 2i+1
● the parent is index i/2

Be careful when doing the lab!

Summary of binary heaps

Binary heaps: O(log n) insert, O(1) find
minimum, O(log n) delete minimum
● A complete binary tree with the heap property,

represented as an array

Heapsort: in place sorting algorithm
based on heaps, takes O(n log n) time
In fact, heaps were originally invented for
heapsort!

Leftist heaps

Merging two heaps

Another operation we might want to do is merge
two heaps
● Build a new heap with the contents of both heaps
● e.g., merging a heap containing 1, 2, 8, 9, 10 and a heap

containing 3, 4, 5, 6, 7 gives a heap containing 1, 2, 3, 4, 5, 6,
7, 8, 9, 10

For our earlier naïve priority queues:
● An unsorted array: concatenate the arrays
● A sorted array: merge the arrays (as in mergesort)

For binary heaps:
● Takes O(n) time because you need to at least copy the

contents of one heap to the other

Can't combine two arrays in less than O(n) time!

Merging tree-based heaps

Go back to our idea of a binary tree with
the heap property:

If we can merge two of these trees, we
can implement insertion and delete
minimum!
(We'll see how to implement merge later)

8

18 29

37 32 74 89

20 28 39 66

Insertion

To insert a single element:
● build a heap containing just that one element
● merge it into the existing heap!

E.g., inserting 12

8

18 29

37 32 74 89

20 28 39 66

+ 12

A tree with
just one node

Delete minimum

To delete the minimum element:
● take the left and right branches of the tree
● these contain every element except the smallest
● merge them!

E.g., deleting 8 from the previous heap

18 29

37 32 74 89

20 28 39 66+

Heaps based on merging

If we can take trees with the heap property,
and implement merging with O(log n)
complexity, we get a priority queue with:
● O(1) find minimum
● O(log n) insertion (by merging)
● O(log n) delete minimum (by merging)
● plus this useful merge operation itself

There are lots of heaps based on this idea:
● skew heaps, Fibonacci heaps, binomial heaps

We will study one: leftist heaps

Naive merging

1. Look at the roots of the two trees

We are going to pick the smaller one as
the root of the new tree

18 29

37 32 74 89

20 28 39 66+

Naive merging

2. Recursively merge the right branch and
the second tree

18

29
37

32
74 89

20

28
39 66+

Naive merging

2. Recursively merge the right branch and
the second tree

18

29
37

32
74 89

20

28
39 66+

Naive merging

2. Recursively merge the right branch and
the second tree

18

29
37

32

74 89

20

39 66+
28

Naive merging

2. Recursively merge the right branch and
the second tree

18

2937

32
74 89

20

39
66+

28

Naive merging

2. Recursively merge the right branch and
the second tree

18

2937

32

74 89

20

39

66

28

Naive merging

2. Recursively merge the right branch and
the second tree

18

2937

32

74 89

20

39

66

28

Performance of naïve merging

The merge algorithm descends down the right
branch of both trees
So the runtime depends on how many times you
can follow the right branch before you get to the
end of the tree
● Let's call this the right null path length

Complexity: O(m+n)
● where m and n are the right null path lengths of the

two trees

Logarithmic complexity for balanced trees, but
linear if the trees are heavily “right-biased”

Worst case for naïve merging

A heavily right-biased tree:

Leftist heaps – observation

Naive merging is:
● bad (linear complexity) for right-biased trees
● good (logarithmic or better) for other trees

Idea of leftist heaps:
● Add an invariant that stops the tree becoming

right-biased
● In other words, by repeatedly following the right

branch, you quickly reach the end of the tree

Null path length

We define the null path length (npl) of a node to be
the shortest path that leads to the end of the tree (a
null in Java)

The null path length of null itself is 0
Similar concept to height, but with height we
measure the longest path in the tree

18

2937

32

74 89

20

39

66

28

npl 3
(left left→

 left))→

npl 2
(left right)→

66

npl 1
(right)

Leftist heaps

Leftist invariant: the npl of the left child
≥ the npl of the right child

This means: the quickest way to reach a
null is to follow the right branch

18

2937

32

74 89

20

39

66

28

66

Leftist merging

We start with the naïve merging algorithm
from earlier:
● The leftist invariant means that naïve merging stops

after O(log n) steps

But the merge might break the leftist
invariant!
● When we descend into the right child, its npl might

increase, and become greater than the left child

Fix it by:
● Going upwards in the tree from where the merge

finished, and wherever we encounter a node where left
child's npl < right child's npl, swap the two children!

Leftist merging

1. Start with naïve merging from earlier

18 29

37 32 74 89

20 28 39 66+
3137

Leftist merging

2. The recursion “bottomed out” at 66
here

18

2937

31

74 89

20

39

66

28

3237

Leftist merging

3. Go up to the parent, compare left and
right child's npl

18

2937

31

74 89

20

39

66

28

32

left npl: 0
right npl: 1

Invariant broken!
37

Leftist merging

4. If the leftist invariant is broken, swap
the left and right children

18

2937

31

74 89

20

39

66

28

32
66 becomes the

left child instead37

Leftist merging

5. Go up again and repeat!

18

2937

31

74 89

20

39

66

28

32

left npl: 2
right npl: 1

OK!
37

Leftist merging

5. Go up again and repeat!

18

2937

31

74 89

20

39

66

28

32

left npl: 1
right npl: 2

Invariant broken!
Swap left and right.

37

Leftist merging

5. Go up again and repeat!

18

2937

31

74 89

20

39

66

28

32

left npl: 2
right npl: 2

OK!
37

Leftist merging

6. When we've reached the root, we've
finished!

Notice how the final heap “leans to the
left”.

18

2937

31

74 89

20

39

66

28

3237

Implementation

Implementation:
● Need to be able to compute npl efficiently
● Add a field for the npl to each node, and update it

whenever we modify the node
● Update by computing: npl = 1 + right child's npl

Complexity of leftist merging

I claim: the npl of a tree of size n is O(log n)
● Check it for yourself :)
● For balanced trees, the npl is O(log n), much like height
● By unbalancing a tree, we make some paths longer, and

some shorter. This increases the height, but decreases
the npl!

Hence, in a leftist heap, by following the right
branch O(log n) times, you reach a null
So merge takes O(log n) time!
● log n steps down the tree to do the naïve tree
● then log n steps upwards while repairing the leftist

invariant

Leftist heaps

Implementation of priority queues:
● binary trees with heap property
● leftist invariant for O(log n) merging
● other operations are based on merge

A good fit for functional languages:
● based on trees rather than arrays

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

