
Real-world sorting
(not on exam)

Sorting algorithms so far

Worst case Average case Best case

Selection
sort

O(n2) O(n2) O(n2)

Insertion
sort

O(n2) O(n2) O(n)

Quicksort O(n2) O(n log n) O(n log n)

Mergesort O(n log n) O(n log n) O(n log n)

Sorting algorithms so far

Worst case Average case Best case

Selection
sort

O(n2) O(n2) O(n2)

Insertion
sort

O(n2) O(n2) O(n)

Quicksort O(n2) O(n log n) O(n log n)

Mergesort O(n log n) O(n log n) O(n log n)

No clear winner...
the best algorithms

combine ideas
from several

Introsort

Quicksort: fast in practice, but O(n2)
worst case
Introsort:
● Start with Quicksort
● If the recursion depth gets too big, switch to

heapsort, which is O(n log n)

Plus standard Quicksort optimisations:
● Choose pivot via median-of-three
● Switch to insertion sort for small arrays

Used by e.g. C++ STL, .NET, ...

Dual-pivot quicksort

Instead of one pivot, pick two
Instead of partitioning the array into two
pieces, partition it into three pieces
● If pivots are x and y, then:
● elements < x
● elements > x and < y
● elements > y

Same complexity as Quicksort, but fewer
recursive calls because the array gets split up
quicker
Used by Java for primitive types (int, ...)

Traditional merge sort
(a recap)

541 3 6 8 2 1 3 7

541 3 6 8 2 1 3 7

541 3 6 8 2 1 3 7

54

1 3

6 8

2 1

3 71 3 2 1

split split

splitsplitsplitsplit

831 1 2 3 4 5 6 7

781 3 4 6 1 2 3 5

781 3 6 4 1 2 3 5

54

1 3

6 8

1 2

3 71 3 2 1

merge merge merge merge

mergemerge

Natural merge sort

Traditional merge sort splits the input
list into single elements before merging
everything back together again
Better idea: split the input into runs
● A run is a sequence of increasing elements
● ...or a sequence of decreasing elements
● First reverse all the decreasing runs, so they

become increasing
● Then merge all the runs together

541 3 6 8 2 1 3 7
split

541 3 6 8 2 1 3 7

split split split

1 2 4

reverse

merge

741 1 2 3 6 8 3 5

merge merge merge

831 1 2 3 4 5 6 7

mergemerge

Natural merge sort

Big advantage: O(n) time for sorted data
● ...and reverse-sorted data
● ...and “almost”-sorted data

Complexity: O(n log r), where r is the
number of runs in the input
● ...worst case, each run has two elements, so r =

n/2, so O(n log n)

Used by GHC

541 3 6 8 2 1 3 7
split

541 3 6 8 2 1 3 7
split split split

1 2 4
reverse

merge

741 1 2 3 6 8 3 5
merge merge merge

831 1 2 3 4 5 6 7
mergemerge

O(n) time per level

O (log r)
“levels”

Total time is
O(n log r)!

Timsort

Natural mergesort is really good on
sorted/nearly-sorted data
● You get long runs so not many merges to do

But not so good on random data
● Short runs so many merges

Idea of Timsort: on short random parts
of the list, switch to insertion sort
How to detect randomness?
● Several short runs next to one another

541 3 6 8 2 1 3 7
split

541 3 6 8 2 1 3 7

split split

1 2 4

reverse

merge

741 1 2 3 6 8 3 5

merge insertion sort

831 1 2 3 4 5 6 7

mergemerge

Don't split 3 7 5
into two runs,
it's too short!

Timsort

Specifically:
● If we come across a short run, join it together with

all following short runs until we reach a threshold
● Then use insertion sort on that part

Also some optimisations for merge:
● Merge smaller runs together first
● If the merge begins with several elements from the

same array, use binary search to find out how many
and then copy them all in one go

Used in Java for arrays of objects, Python
http://en.wikipedia.org/wiki/Timsort

http://en.wikipedia.org/wiki/Timsort

The best sorting algorithm?

A good sorting algorithm should:
● have O(n log n) complexity
● have O(n) complexity on nearly-sorted data
● be simple
● be in-place

No algorithm seems to have all of these!

Summary

No one-size fits all answer
● Best overall complexity: natural mergesort
● But quicksort has smaller constant factors

Different algorithms are good in different
situations
● ...you should find out which in the lab :)

Best sorting functions combine ideas
from several algorithms
● Introsort: quicksort+heapsort+insertion sort
● Timsort: natural mergesort+insertion sort

Special-purpose
sorting algorithms

(not on exam)

Sorting integers

All the algorithms we've seen work by
comparing elements of the list with ≤
● Advantage: general purpose

If the list contains integers, we can do
something different!
● Counting sort:

http://en.wikipedia.org/wiki/Counting_sort
● Bucket sort:

http://en.wikipedia.org/wiki/Bucket_sort
● Radix sort (dates from 1887!):

http://en.wikipedia.org/wiki/Radix_sort

http://en.wikipedia.org/wiki/Counting_sort
http://en.wikipedia.org/wiki/Bucket_sort
http://en.wikipedia.org/wiki/Radix_sort

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

