
Quicksort
(Weiss chapter 8.6)

Recap of before Easter

We saw a load of sorting algorithms,
including mergesort
To mergesort a list:
● Split the list into two halves
● Recursively mergesort the two halves
● Merge the two sorted halves into one

This is an instance of divide and conquer
Quicksort is also divide and conquer!

Mergesort

1. Split the list into two equal parts

485 3 9 2 7 3 2 1

85 3 9 2 47 3 2 1

Mergesort

2. Recursively mergesort the two parts

85 3 9 2 47 3 2 1

853 92 4 7321

Mergesort

3. Merge the two sorted lists together

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4

Quicksort

Pick an element from the array, called
the pivot
Partition the array:
● First come all the elements smaller than the

pivot, then the pivot, then all the elements
greater than the pivot

Recursively quicksort the two partitions

Quicksort

5 3 9 2 8 7 3 2 1 4
Say the pivot is 5.
Partition the array into: all elements less
than 5, then 5, then all elements greater
than 5

3 3 2 2 1 4 5 9 8 7

Less than the pivot Greater than the pivot

Quicksort

Now recursively quicksort the two
partitions!

3 3 2 2 1 4 5 9 8 7

1 2 2 3 3 4 5 7 8 9

Quicksort Quicksort

Pseudocode

// call as sort(a, 0, a.length-1);
void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 // assume that partition returns the
 // index where the pivot now is
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
}

Common optimisation: switch to insertion sort
when the input array is small

Complexity of quicksort

In the best case, partitioning splits an
array of size n into two halves of size n/2:

n

n/2 n/2

Complexity of quicksort

The recursive calls will split these arrays
into four arrays of size n/4:

n

n/2 n/2

n/4 n/4 n/4 n/4

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

Total time is
O(n log n)!

Complexity of quicksort

But that's the best case!
In the worst case, everything is greater
than the pivot (say)
● The recursive call has size n-1
● Which in turn recurses with size n-2, etc.
● Amount of time spent in partitioning:

n + (n-1) + (n-2) + … + 1 = O(n2)

n

n-1

n-2

n-3

n
“levels”

O(n) time per level

Total time is
O(n2)!

Worst cases

When we pick the first element as the
pivot, we get this worst case for:
● Sorted arrays
● Reverse-sorted arrays

Complexity of quicksort

Quicksort works well when the pivot
splits the array into roughly equal parts
● Median-of-three: pick first, middle and last

element of the array and pick the median of
those three

● Pick pivot at random: gives O(n log n) expected
(probabilistic) complexity

Introsort: detect when we get into the
O(n2) case and switch to a different
algorithm (e.g. heapsort)

48

Partitioning algorithm

1. Pick a pivot (here 5)

5 3 9 2 7 3 2 1

48

Partitioning algorithm

2. Set two indexes, low and high

Idea: everything to the left of low is less
than the pivot (coloured yellow),
everything to the right of high is greater
than the pivot (green)

5 3 9 2 7 3 2 1

low high

48

Partitioning algorithm

3. Move low right until you find
something greater than the pivot

5 3 9 2 7 3 2 1

low high

48

Partitioning algorithm

3. Move low right until you find
something greater or equal to the pivot

while (a[low] < pivot) low++;

5 3 9 2 7 3 2 1

highlow

48

Partitioning algorithm

3. Move low right until you find
something greater than the pivot

while (a[low] < pivot) low++;

5 3 9 2 7 3 2 1

low high

Partitioning algorithm

3. Move high left until you find
something less than the pivot

while (a[high] < pivot) high--;

485 3 9 2 7 3 2 1

low high

Partitioning algorithm

4. Swap them!

swap(a[low], a[high]);

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

low++; high--;

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

while (a[low] < pivot) low++;

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

while (a[high] < pivot) high++;

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

swap(a[low], a[high]);

915 3 4 2 7 3 2 8

low high

Partitioning algorithm

5. Advance low and high and repeat

low++; high--;

915 3 4 2 7 3 2 8

low high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 7 3 2 8

low high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 7 3 2 8

low high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 2 3 7 8

low high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 2 3 7 8

low

high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 2 3 7 8

low

high

Partitioning algorithm

6. When low and high have crossed, we
are finished!

But the pivot is in the
wrong place.

915 3 4 2 2 3 7 8

low

high

Partitioning algorithm

7. Last step: swap pivot with high

913 3 4 2 2 5 7 8

low

high

Details

1. What to do if we want to use a
different element (not the first) for the
pivot?
● Swap the pivot with the first element before

starting partitioning!

Details

2. What happens if the array contains
many duplicates?
● Notice that we only advance a[low] as long as

a[low] < pivot
● If a[low] == pivot we stop, same for a[high]
● If the array contains just one element over and

over again, low and high will advance at the
same rate

● Hence we get equal-sized partitions

Pivot

Which pivot should we pick?
● First element: gives O(n2) behaviour for already-

sorted lists
● Median-of-three: pick first, middle and last

element of the array and pick the median of
those three

● Pick pivot at random: gives O(n log n) expected
(probabilistic) complexity

Quicksort

Typically the fastest sorting algorithm...
...but very sensitive to details!
● Must choose a good pivot to avoid O(n2) case
● Must take care with duplicates
● Switch to insertion sort for small arrays to get

better constant factors

Mergesort vs quicksort

Quicksort:
● In-place
● O(n log n) but O(n2) if you are not careful
● Works on arrays only (random access)

Compared to mergesort:
● Not in-place
● O(n log n)
● Only requires sequential access to the list – this makes it

good in functional programming

Both the best in their fields!
● Quicksort best imperative algorithm
● Mergesort best functional algorithm

Complexity of
recursive functions

(Weiss 7.5)

Calculating complexity

Let T(n) be the time mergesort takes on a
list of size n

Mergesort does O(n) work to split the list in two,
two recursive calls of size n/2 and O(n) work to
merge the two halves together, so...

T(n) = O(n) + 2T(n/2)

Time to sort a
list of size n

Linear amount
of time spent in

splitting +
merging

Plus two
recursive calls

of size n/2

Calculating complexity

Procedure for calculating complexity of a
recursive algorithm:
● Write down a recurrence relation

e.g. T(n) = O(n) + 2T(n/2)
● Solve the recurrence relation to get a formula

for T(n) (difficult!)

There isn't a general way of solving any
recurrence relation – we'll just see a few
families of them

Approach 1:
draw a diagram

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

O(log n)
“levels”

O(n) time per level

Total time is
O(n log n)!

T(n)

2T(n/2)

4T(n/4)

8T(n/8)

Another example:
T(n) = O(1) + 2T(n-1)

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

O(n)
“levels”

amount of work doubles at each level

T(n)

2T(n-1)

4T(n-2)

8T(n-3)

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

O(n)
“levels”

amount of work doubles at each level

Total time is
O(2n)!

T(n)

2T(n-1)

4T(n-2)

8T(n-3)

This approach

Good for building an intuition
Maybe a bit error-prone
Approach 2: expand out the definition
Example: solving T(n) = O(1) + T(n-1)

Expanding out recurrence relations

T(n) = 1 + T(n-1)
= 2 + T(n-2)
= 3 + T(n-3)
= …
= n + T(0)
= O(n)

T(0) is a constant,
so O(1)

Another example: T(n) = O(n) + T(n-1)

T(n) = n + T(n-1)
= n + (n-1) + T(n-2)
= n + (n-1) + (n-2) + T(n-3)
= …
= n + (n-1) + (n-2) + … + 1 + T(0)
= n(n+1) / 2 + T(0)
= O(n2)

Another example: T(n) = O(1) + T(n/2)

T(n) = 1 + T(n/2)
= 2 + T(n/4)
= 3 + T(n/8)
= …
= log n + T(1)
= O(log n)

Another example: T(n) = O(n) + T(n/2)

T(n) = n + T(n/2):
T(n) = n + T(n/2)
= n + n/2 + T(n/4)
= n + n/2 + n/4 + T(n/8)
= …
= n + n/2 + n/4 + …
< 2n
= O(n)

Functions that recurse once

T(n) = O(1) + T(n-1): T(n) = O(n)
T(n) = O(n) + T(n-1): T(n) = O(n2)
T(n) = O(1) + T(n/2): T(n) = O(log n)
T(n) = O(n) + T(n/2): T(n) = O(n)
An almost-rule-of-thumb:
● Solution is maximum recursion depth times

amount of work in one call

(except that this rule of thumb would
give O(n log n) for the last case)

Divide-and-conquer algorithms

T(n) = O(n) + 2T(n/2): T(n) = O(n log n)
● This is mergesort! There is a nice proof in the

book (theorem 7.4).

T(n) = 2T(n-1): T(n) = O(2n)
● Because 2n recursive calls of depth n

Other cases: master theorem (Wikipedia)
or theorem 7.5 from book
● Kind of fiddly – best to just look it up if you

need it

Complexity of recursive functions

Basic idea – recurrence relations
Easy enough to write down, hard to solve
● One technique: expand out the recurrence and see

what happens
● Another rule of thumb: multiply work done per level

with number of levels
● Drawing a diagram (like for quicksort) can help!

Master theorem for divide and conquer
Luckily, in practice you come across the same
few recurrence relations, so you just need to
know how to solve those

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

