
Sorting
(Weiss chapter 8.1 – 8.3, 8.5)

Sorting

5 3 9 2 8 7 3 2 1 4

1 2 2 3 3 4 5 7 8 9

Zillions of sorting algorithms
(bubblesort, insertion sort, selection
sort, quicksort, heapsort, mergesort,
shell sort, counting sort, radix sort, …)

Sorting

Why is sorting important? Because sorted data is
much easier to deal with!
● Searching – use binary instead of linear search
● Finding duplicates – takes linear instead of quadratic time
● etc.

Most sorting algorithms are based on
comparisons
● Compare elements – is one bigger than the other? If not,

do something about it!
● Advantage: they can work on all sorts of data
● Disadvantage: specialised algorithms for e.g. sorting lists

of integers can be faster

Insertion sort

Imagine someone is dealing you cards.
Whenever you get a new card you put it
into the right place in your hand:

This is the idea of insertion sort.

Insertion sort

Sorting :

Start by “picking up” the 5:

5 3 9 2 8

5

Insertion sort

Sorting :

Then insert the 3 into the right place:

5 3 9 2 8

3 5

Insertion sort

Sorting :

Then the 9:

5 3 9 2 8

3 5 9

Insertion sort

Sorting :

Then the 2:

5 3 9 2 8

2 3 5 9

Insertion sort

Sorting :

Finally the 8:

5 3 9 2 8

2 3 5 8 9

Complexity of insertion sort

Insertion sort does n insertions for an
array of size n
Does this mean it is O(n)? No! An
insertion is not constant time.
To insert into a sorted array, you must
move all the elements up one, which is
O(n).
Thus total is O(n2).

In-place insertion sort

This version of insertion sort needs to
make a new array to hold the result
An in-place sorting algorithm is one that
doesn't need to make temporary arrays
● Has the potential to be more efficient

Let's make an in-place insertion sort!
Basic idea: loop through the array, and
insert each element into the part which is
already sorted

In-place insertion sort

The first element of the array is sorted:

5 3 9 2 8

5 3 9 2 8

White bit: sorted

In-place insertion sort

Insert the 3 into the correct place:

5 3 9 2 8

3 5 9 2 8

In-place insertion sort

Insert the 9 into the correct place:

3 5 9 2 8

3 5 9 2 8

In-place insertion sort

Insert the 2 into the correct place:

3 5 9 2 8

2 3 5 9 8

In-place insertion sort

Insert the 8 into the correct place:

2 3 5 9 8

2 3 5 8 9

In-place insertion

One way to do it: repeatedly swap the
element with its neighbour on the left,
until it's in the right position

2 3 5 9 4

2 3 5 4 9

In-place insertion

2 3 4 5 9

2 3 5 4 9

while n > 0 and array[n] > array[n-1]
 swap array[n] and array[n-1]
 n = n-1

In-place insertion

An improvement: instead of swapping,
move elements upwards to make a “hole”
where we put the new value

2 3 5 9 4

2 3 5 9

In-place insertion

2 3 5 9 4

2 3 5 9

2 3 5 9

In-place insertion sort

for i = 1 to n
 insert array[i] into array[0..i-1)

An aside: we have the invariant that
array[0..i) is sorted
● An invariant is something that holds whenever the

loop body starts to run
● Initially, i = 1 and array[0..1) is sorted
● As the loop runs, more and more of the array

becomes sorted
● When the loop finishes, i = n, so array[0..n) is

sorted – the whole array!

This notation
means

0, 1, …, i-1

Selection sort

Find the smallest element of the array,
and delete it
Find the smallest remaining element, and
delete it
And so on
Finding the smallest element is O(n), so
total complexity is O(n2)

Selection sort

Sorting :

The smallest element is 2:

We also delete 2 from the input array.

5 3 9 2 8

2

Selection sort

Sorting :

Now the smallest element is 3:

We delete 3 from the input array.

5 3 9 8

2 3

Selection sort

Sorting :

Now the smallest element is 5:

We delete 5 from the input array.
(...and so on)

5 9 8

2 3 5

In-place selection sort

Instead of deleting the smallest element,
swap it with the first element!
The next time round, ignore the first
element of the array: we know it's the
smallest one.
Instead, find the smallest element of the
rest of the array, and swap it with the
second element.

In-place selection sort

Sorting :

The smallest element is 2:

5 3 9 2 8

2 3 9 5 8

In-place selection sort

The smallest element in the rest of the
array is 3:

2 3 9 5 8

2 3 9 5 8

In-place selection sort

The smallest element in the rest of the
array is 5:

2 3 9 5 8

2 3 5 9 8

In-place selection sort

The smallest element in the rest of the
array is 8:

2 3 5 9 8

2 3 5 8 9

for i = 0 to a.length-1
 find the smallest element in a[i..a.length)
 swap it with a[i]

In-place selection sort

Comparing the sorting algorithms

All the algorithms so far are O(n2) in the
worst case
One of them is O(n) in the best case (a
sorted array) – which?

Comparing the sorting algorithms

All the algorithms so far are O(n2) in the
worst case
One of them is O(n) in the best case (a
sorted array) – which?
● Answer: insertion sort
● Insertion sort is actually the fastest sorting

algorithm in general for small lists – it has low
constant factors

● Selection sort is bad but it's the basis for a better
algorithm, heapsort

Divide and conquer

Very general name for a type of recursive
algorithm
You have a problem to solve.
● Split that problem into smaller subproblems
● Recursively solve those subproblems
● Combine the solutions for the subproblems to

solve the whole problem

To solve this...

1. Split the problem
into subproblems

2. Recursively solve
the subproblems

3. Combine
the solutions

Mergesort

We can merge two sorted lists into one in
linear time:

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4

Mergesort

A divide-and-conquer algorithm
To mergesort a list:
● Split the list into two equal parts
● Recursively mergesort the two parts
● Merge the two sorted lists together

Mergesort

1. Split the list into two equal parts

485 3 9 2 7 3 2 1

85 3 9 2 47 3 2 1

Mergesort

2. Recursively mergesort the two parts

85 3 9 2 47 3 2 1

853 92 4 7321

Mergesort

3. Merge the two sorted lists together

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4

Complexity of mergesort

An array of size n gets split into two
arrays of size n/2:

n

n/2 n/2

Complexity of mergesort

The recursive calls will split these arrays
into four arrays of size n/4:

n

n/2 n/2

n/4 n/4 n/4 n/4

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

Total time is
O(n log n)!

Complexity analysis

Mergesort's complexity is O(n log n)
● Recursion goes log n “levels” deep
● At each level there is a total of O(n) work

General “divide and conquer” theorem:
● If an algorithm does O(n) work to split the input

into two pieces of size n/2 (or k pieces of size
n/k)...

● ...then recursively processes those pieces...
● ...then does O(n) work to recombine the results...
● ...then the complexity is O(n log n)

A negative result

Insertion sort is based on swapping
adjacent elements
● Many other simple sorting algorithms are too

(e.g. bubble sort)
● You can also view selection sort this way

No sorting algorithm that works like this
can be better than O(n2)!
See section 8.3 for details.
(Not part of the course – an extra for
those who are interested)

Sorting so far

There are a huge number of sorting algorithms
● No single best one, each has advantages (hopefully) and

disadvantages

Insertion sort and selection sort:
● O(n2) so not good overall
● Insertion sort is good on small arrays though

Merge sort:
● O(n log n), hooray!
● But not in-place and high constant factors

We'll see more sorting algorithms after Easter!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

