Complexity (Weiss chapter 5)

Complexity

This lecture is all about how to describe the performance of an algorithm
Last time we had three versions of the file-reading program. For a file of size n :

- The first one needed to copy $\mathrm{n}^{2} / 2$ characters
- The second one needed to copy $n^{2} / 200$ characters
- The third needed to copy 2 n characters

We worked out these formulas, but it was a bit of work - now we'll see an easier way

Why do we ignore constant factors?

Well, when n is 1000000 ...

- $\log _{2} \mathrm{n}$ is 20
- n is 1000000
- n^{2} is 1000000000000
- 2^{n} is a number with 300,000 digits...

Given two algorithms:

- The first takes $1000000 \log _{2} \mathrm{n}$ steps to run
- The second takes $0.00000001 \times 2^{\mathrm{n}}$

The first is miles better!
Constant factors normally don't matter

Big O notation

Instead of saying...

- The first implementation copies $\mathrm{n}^{2} / 2$ characters
- The second copies $n^{2} / 200$ characters
- The third copies $2 n$ characters

We will just say...

- The first implementation copies $\mathbf{O}\left(\mathbf{n}^{2}\right)$ characters
- The second copies $\mathbf{O}\left(\mathbf{n}^{2}\right)$ characters
- The third copies $\mathbf{O}(\mathbf{n})$ characters

O(n ${ }^{2}$) means "proportional to $n^{2 "}$
(almost)

Time complexity

With big-O notation, it doesn't matter whether we count steps or time!
Suppose an algorithm takes $\mathrm{n}^{2} / 2$ steps, which is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
And suppose each step takes 100 ns to run Then the algorithm takes $50 \mathrm{n}^{2} \mathrm{~ns}$, which is also $\mathrm{O}\left(\mathrm{n}^{2}\right)$!
We say that the algorithm has $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time complexity or simply complexity

Do we really need big O notation?

What happens without big O?

How many steps does this function take on an array of length n (in the worst case)?
Object search(Object[] a, Object x) \{ for (int i = 0; i < a.length; i++) \{ if (a[i].equals(target)) return a[i];

[^0]
Assume that loop body takes 1 step

 \}
What happens without big O?

How many steps does this function take on an array of length n (in the y orst case)?
Object search (Objec + [] ; jer f) \{ for (int i = 0; i < ; \{ if (a[i].equa. Answer: return a[.
\}
return null;

What about this one?

boolean unique(Object[] a) \{ for(int i = 0; i < a.length; i++) for (int j = 0; j < a.length; j++) if (a[i].equals(a[j]) \&\& i != j) return false;
return true;
\}

What about this one?

boolean unique (Object Γ a)
for(int i = 0
$<$
++)
for (int i-
.+)
if (a[. $\begin{gathered}\text { Outer loop runs } n \text { times } \\ \text { Each time, inner loop }\end{gathered} \quad!=j$) rot+ runs n times
return true Total: $n \times n=n^{2}$
\}

What about this one?

boolean unique(Object[] a) \{ for (int i = 0; i < a.length; i++)
for (int j = 0; j < i ; j++) if (a[i].equals(a[j]), return false;
return true;
Loop runs to i instead of n

Some hard sums

When $i=0$, inner loop runs 0 times
When $i=1$, inner loop runs 1 time

When $i=n-1$, inner loop runs $n-1$ times

Total:

- $\sum_{i=0}^{n-1} i=0+1+2+\ldots+n-1$
which is $n(n-1) / 2$

What about this one?

boolean unique(Object[] a) \{ for(int i = 0; i < a.lengt'i; i++) for (int j = 0; i< if (a[i].enual return fao Answer: $n(n-1) / 2$ return true; \}

What about this one?

void something(Object[] a) \{
for (int $i=0 ; i<a . l e n g t h ; i++)$
for (int $j=0 ; j<i ; j++$)
for (int $k=0 ; k<j ; k++$)
"something that takes 1 step"
\}

More hard sums

$$
\sum_{n=0}^{1-1} \sum_{i=1}^{n} \sum_{i=0}^{1} 1
$$

Inner loop:
k goes from 0 to $j-1$

Outer loop:
i goes from 0 to $n-1$
Middle loop:
j goes from 0 to i-1

Counts: how many values i, j, k where $0 \leq i<n, 0 \leq j<i, 0 \leq k \leq j$

More hard sums

$$
\sum_{n=0}^{1-1} \sum_{i=1} \sum_{i=1} 1
$$

I have no idea
how to solve this! Wolfram Alpha says it's

$$
n(n-1)(n-2) / 6
$$

Counts: how many values i, j, k where $0 \leq i<n, 0 \leq j<i, 0 \leq k \leq j$

What about this one?

void something(Object[] a) \{ for (int $\left.i=0 ; i<a . l e n g \dagger^{\prime} \mid ; i++\right)$ for (int $j=0 ; i<$ for (int $k=6$ Answer: "something $n(n-1)(n-2) / 6, \quad$ step"
\} apparently

This is just horrible! Isn't there a better way?

Using big O complexity

void something(Object[] a) \{
for (int $i=0 ; i<a . l e n g t h ; i++)$
for (int $j=0 ; i<i ; j++$)
for (int $k=0 ; \quad<j$ k++)
"something th-"
\}
Three nested loops, all running from
0 to at most n... Answer: $\mathbf{O}\left(\mathbf{n}^{3}\right)$.

Why ignore constant factors?

We lose some precision by throwing away constant factors

- ...you probably do care about a factor of 100 performance improvement
On the other hand, life gets much simpler:
- A small phrase like $O\left(n^{2}\right)$ tells you a lot about how the performance scales when the input gets big
- It turns out to be much easier to calculate big-O complexity than a precise formula
Big O is normally a good compromise!

Big O, formally

Big O measures the growth of a mathematical function

- Typically a function $\mathrm{T}(n)$ giving the number of steps taken by an algorithm on input of size n
- But can also be used to measure space complexity (memory usage) or anything else
So for the file-copying program:
- $T(n)=n^{2} / 2$
- $\mathrm{T}(\mathrm{n})$ is in $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Big O, formally

What does it mean to say " $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ "?
We could say it means $T(n)$ is proportional to n^{2}

- i.e. $T(n)=k n^{2}$ for some k

But this is too restrictive!

- What if e.g. $\mathrm{T}(\mathrm{n})=\mathrm{kn}(\mathrm{n}-1)$, or $\mathrm{T}(\mathrm{n})=\mathrm{kn}^{2}+1$? We still want it to be $O\left(n^{2}\right)$!

Big O, formally

Instead, we say that $T(n)$ is $O\left(n^{2}\right)$ if:

- $T(n) \leq k n^{2}$ for some k, i.e. $\mathrm{T}(\mathrm{n})$ is proportional to n^{2} or lower!
- This only has to hold for big enough n: i.e. for all n above some threshold n_{0}

If you draw the graphs of $T(n)$ and kn^{2}, at some point the graph of kn^{2} must permanently overtake the graph of $\mathrm{T}(\mathrm{n})$

- In other words, $\mathrm{T}(\mathrm{n})$ grows more slowly than kn^{2} Note that big-O notation is allowed to overestimate the complexity!

An example: $n^{2}+2 n+3$ is $O\left(n^{2}\right)$

Exercises

- Is $\mathrm{n}^{2}+2 \mathrm{n}+3$ in $\mathrm{O}\left(\mathrm{n}^{3}\right)$?
- Is it in $\mathrm{O}(\mathrm{n})$?
- Is $3 n+5$ in $\mathrm{O}(\mathrm{n})$?
- Why do we need the threshold?
Big-O

Name

O (1)
Constant
$\mathrm{O}(\log n) \quad$ Logarithmic
$\mathrm{O}(n) \quad$ Linear
$\mathrm{O}(n \log n) \quad$ Log-linear
$\mathrm{O}\left(n^{2}\right)$
Quadratic
$\mathrm{O}\left(n^{3}\right)$
Cubic
$\mathrm{O}\left(2^{n}\right)$
Exponential
$\mathrm{O}(n!)$
Factorial

Growth rates

Imagine that we double the input size from n to 2 n .
If an algorithm is...

- $\mathrm{O}(1)$, then it takes the same time as before
- O(log n), then it takes a constant amount more
- $O(n)$, then it takes twice as long
- $O(\mathrm{n} \log \mathrm{n})$, then it takes twice as long plus a little bit more
- $O\left(n^{2}\right)$, then it takes four times as long

If an algorithm is $\mathrm{O}\left(2^{\mathrm{n}}\right)$, then adding one element makes it take twice as long
Big O tells you how the performance of an algorithm is affected by the input size

Adding big O (a hierarchy)

$\mathrm{O}(1)<\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}(\mathrm{n} \log \mathrm{n})<$
$\mathrm{O}\left(\mathrm{n}^{2}\right)<\mathrm{O}\left(\mathrm{n}^{3}\right)<\mathrm{O}\left(2^{\mathrm{n}}\right)$
When adding a term lower in the hierarchy to one higher in the hierarchy, the lower-complexity term disappears:

$$
\begin{aligned}
& O(1)+O(\log n)=O(\log n) \\
& O(\log n)+O\left(n^{k}\right)=O\left(n^{k}\right)(i f k \geq 0) \\
& O\left(n^{i}\right)+O\left(n^{k}\right)=O\left(n^{k}\right) \text { if } j \leq k \\
& O\left(n^{k}\right)+O\left(2^{n}\right)=O\left(2^{n}\right)
\end{aligned}
$$

An example: $n^{2}+2 n+3$ is $O\left(n^{2}\right)$

Quiz

What are these in Big O notation?

- $\mathrm{n}^{2}+11$
- $2 n^{3}+3 n+1$
- $\mathrm{n}^{4}+2^{\mathrm{n}}$

Just use hierarchy!

$$
\begin{aligned}
& n^{2}+11=O\left(n^{2}\right)+O(1)=O\left(n^{2}\right) \\
& 2 n^{3}+3 n+1=O\left(n^{3}\right)+O(n)+O(1)=O\left(n^{3}\right) \\
& n^{4}+2^{n}=O\left(n^{4}\right)+O\left(2^{n}\right)=O\left(2^{n}\right)
\end{aligned}
$$

Multiplying big O

O (this) $\times \mathrm{O}$ (that) $=\mathrm{O}$ (this \times that $)$

- e.g., $O\left(n^{2}\right) \times O(\log n)=O\left(n^{2} \log n\right)$

You can drop constant factors:

- $\mathrm{k} \times \mathrm{O}(\mathrm{f}(\mathrm{n}))=\mathrm{O}(\mathrm{f}(\mathrm{n}))$, if k is constant
- e.g. $2 \times O(n)=O(n)$
(Exercise: show that these are true)

Quiz

What is $\left(n^{2}+3\right)\left(2^{n} \times n\right)+\log _{10} n$ in Big O notation?

Answer

$\left(n^{2}+3\right)\left(2^{n} \times n\right)+\log _{10} n$
$=O\left(n^{2}\right) \times O\left(2^{n} \times n\right)+O(\log n)$
$=O\left(2^{n} \times n^{3}\right)+O(\log n)\left(m u^{1}+i p l i c a t i o n\right)$
$=O\left(2^{n} \times n^{3}\right)$ (hierarchy $)$

$$
\begin{gathered}
\log _{10} \mathrm{n}=\log \mathrm{n} / \log 10 \\
\text { i.e. } \log \mathrm{n} \text { times a } \\
\text { constant factor }
\end{gathered}
$$

Complexity of a program

boolean unique(Object[] a) \{
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a.length; j++)
if (a[i].equals(a[j]) \&\& i != j) return false;
return true;
\}

Complexity of a program

Outer loop runs
boolean unique (Object[] a) \{ n times:

$$
\mathrm{O}(\mathrm{n}) \times \mathrm{O}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)
$$

for (int $i=0 ; i<a . l$.
for (int $j=0 ; j<a . l e r_{o} \ldots$, ,

$$
\text { it } \quad \neg\lceil i\rceil \text { equals }(a[j]) \& \& i \quad!=j)
$$

Inner loop runs e;
ret
Loop body:
\}
$\mathrm{O}(1)$

Complexity of loops

The complexity of a loop is: the number of times it runs times the complexity of the body

What about this one?

void function(int n) \{
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} * \mathrm{n}$; $\mathrm{i}++$)
for (int $j=0 ; j<n / 2 ; j++$)
"something taking $O(1)$ time"
\}

What about this ona?

Outer loop runs
void function(int n) \{ for (int i = 0; i $<\mathbf{n * n}$, n^{2} times:
$\mathbf{O}\left(\mathbf{n}^{2}\right) \times O(n)=O\left(n^{3}\right)$
for (int j = 0; $j<n / 2 ;$,
". sthins taking $O(1)$ time"

Loop body: O(1)

Here's a new one

boolean unique(Object[] a) \{ for (int i = 0; i < a.length; i++)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$) if (a[i].equals(a[j])) return false;
return true;
\}

Here's a new one

boolean unique(Object[] a) \{
for (int i = 0; i < a.length; i++)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$) it ' \rightarrow 「i7 enuals ($a[j])$)

Inner loop is $\quad=$:
ret $\mathrm{i} \times \mathrm{O}(1)=\mathrm{O}(\mathrm{i})$??
But it should be
\} in terms of n ?

Body is $\mathrm{O}(1)$

Here's a new one

boolean unique(Object[] a) \{
for (int i = 0; i < a.length; i++)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$) it ' \quad 「i7 enuals ($a[j]$)) $\mathrm{i}<\mathrm{n}$, so i is $\mathbf{O}(\mathbf{n}) \quad=:$
ret Soloop runs $\mathbf{O (n)}$ times, complexity:
\} $\quad O(n) \times O(1)=O(n)$
Body is $\mathrm{O}(1)$

Here's a new one

Outer loop runs

 boolean unique (Object[] a) $\left\{\begin{array}{c}n \text { times: } \\ O(n) \times O(n)=O\left(n^{2}\right)\end{array}\right.$ for $(i n t ~ i=0 ; i<a . l$.for (int $j=0 ; j<i ; j r$, it ' \uparrow 「i7 enuals $(a[j])$) $\mathrm{i}<\mathrm{n}$, so i is $\mathbf{O (n)}=$:
ret So loop runs $\mathbf{O (n)}$ times, complexity:
\} $\quad O(n) \times O(1)=O(n)$

Body is $\mathrm{O}(1)$

The example from earlier

void something(Object[] a) \{ for (int i = 0; i < a.length; i++)
for (int j = 0; j < i; j++)
for (int k = 0; k < j; k++)
"something that takes 1 step"
\}

$$
\mathrm{i}<\mathrm{n}, \mathrm{j}<\mathrm{n}, \mathrm{k}<\mathrm{n},
$$

so all three loops run $\mathbf{O}(\mathbf{n})$ times
Total runtime is
$\mathrm{O}(\mathrm{n}) \times \mathrm{O}(\mathrm{n}) \times \mathrm{O}(\mathrm{n}) \times \mathrm{O}(1)=\mathbf{O}\left(\mathbf{n}^{3}\right)$

What's the complexity?

void something(Object[] a) \{
for (int i = 0; i < a.length; i++) for (int $\mathrm{j}=1$; $\mathrm{j}<\mathrm{a}$.length; j *= 2)
... // something taking $O(1)$ time
\}

Outer loop is What's the complexity?
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
Inner loop is $\mathrm{O}(\log \mathrm{n})$
for (int $i=0$; $\mathrm{i}<a . l e n g t h ; i$.

$$
\text { for (int } j=1 ; j<a . l e n g t i n ; j *=2 \text {) }
$$

... // something taking $O(1)$ time
\}

A loop running through $i=1,2,4, \ldots, n$ runs $\mathbf{O}(\log \mathbf{n})$ times!

While loops

long squareRoot(long n) \{

$$
\begin{aligned}
& \text { long } i=0 ; \\
& \text { long } j=n+1 ; \\
& \text { while }(i+1 \quad!=j)\left\{\begin{array}{c}
\text { Each iteration takes } \\
\text { O(1) time... } \\
\text { but how many times } \\
\text { does the loop run? }
\end{array}\right. \\
& \quad \text { long } k=(i+j) / 2 ; \\
& \text { if }(k * k<=n) i=k ; \\
& \text { else } j=k ;
\end{aligned}
$$

\}
return i;
\}

While loops

long squareRoot (long n) \{

$$
\begin{aligned}
& \text { long } i=0 ; \\
& \text { long } j=n+1 ; \\
& \text { while }(i+1 \quad!=j)\{ \\
& \quad \text { long } k=(i+j) / 2 ; \\
& \quad \text { if }(k * k<=n) i=k \\
& \quad \text { else } j=k ;
\end{aligned}
$$

Each iteration takes $\mathrm{O}(1)$ time
\}
...and halves
j ji, so $\mathbf{O}(\log \mathbf{n})$ iterations

Summary: loops

Basic rule for complexity of loops:

- Number of iterations times complexity of body
- for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$) ...: n iterations
- for (int $\mathrm{i}=1 ; \mathrm{i} \leq \mathrm{n} ; \mathrm{i}^{*}=2$): $\mathrm{O}(\log \mathrm{n})$ iterations
- While loops: same rule, but can be trickier to count number of iterations
If the complexity of the body depends on the value of the loop counter:
- e.g. $\mathrm{O}(\mathrm{i})$, where $0 \leq \mathrm{i}<\mathrm{n}$
- round it up to $\mathrm{O}(\mathrm{n})$!

Sequences of statements

What's the complexity here?
(Assume that the loop bodies are O(1))
for (int $i=0 ; i<n ; i++$)
for (int $i=1 ; i<n ; i *=2$) ...

Sequences of statements

What's the complexity here?
(Assume that the loop bodies are O(1))
for (int $i=0 ; i<n ; i++$)
for (int $i=1 ; i<n ; i *=2$) ...
First loop: O(n)
Second loop: $\mathbf{O}(\log \mathbf{n})$
Total: $O(n)+O(\log n)=\mathbf{O}(\mathbf{n})$
For sequences, add the complexities!

A familiar scene

int[] array = \{\}; for (int i = 0; i < n; i++) \{ int[] newArray = new int[array.length+1]; for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{i}$; j++) newArray[j] = array[j];
newArray = array;
\}

Assume that each statement takes $\mathrm{O}(1)$ time

A familiar scene

Rest of loop body $\mathbf{O (1)}$,

for (int $i=0 ; i<n ; i \begin{gathered}\text { so loop body } \\ O(1)+O(n)=\mathbf{O}(\mathbf{n})\end{gathered}$
int[] array $=\{ \} ;$
int[] new.irray =
new int[, rray.length+1];
for (int $\mathrm{j} \quad 0$; j < i; j++) newArray[J = array[i];
newArray =
\}
Outer loop:
n iterations, O(n) body, so $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Inner loop O(n)

A familiar scene, take 2

int[] array = \{\};
for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}+=100$) \{
int[] newArray = new int[array.length+100];
for (int j = 0; $\mathrm{j}<\mathrm{i}$; j++) newArray[j] = array[j];
newArray = array;
\}

A familiar scene, take 2

int[] array = \{\};
for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}+=100$) \{
int[] new.irray =
new int[, rray.length+100];
for (int $\mathrm{j} \quad 0$; j < i j++) newArray[J = array[j];

A familiar scene, take 3

int[] array = \{0\};
for (int $\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; $\mathrm{i} *=2$) \{ int[] newArray = new int[array.length*2]; for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$) newArray[j] = array[j];
newArray = array;
\}

A familiar scene, take 3

int[] array = \{0\};
for (int $\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; $\mathrm{i} *=2$) \{ int[] newArray = new int[array.length*2]; for (int $j=0 ; j<i ; j++$) newArray[j] array[j];
newArray =
\}

Outer loop:
$\log n$ iterations,
O(n) body,
so $0(n \log n)$??

A familiar scene, take 3

int[] array = \{0\};
for (int $\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; $\mathrm{i} *=2$) \{ int[] newArray = new int[array.length*2]; for (int $j=0 ; j<i ; j++$) newArray[j] array[j];

\}
Here we
"round up"
$\mathrm{O}(\mathrm{i})$ to $\mathrm{O}(\mathrm{n})$.
This causes an overestimate!

A complication

Our algorithm has O(n) complexity, but we've calculated $O(n \log n)$

- An overestimate, but not a severe one (If $\mathrm{n}=1000000$ then $\mathrm{n} \log \mathrm{n}=20 \mathrm{n}$)
- This can happen but is normally not severe
- To get the right answer: do the maths

Good news: for "normal" loops this doesn't happen

- If all bounds are n , or n^{2}, or another loop variable, or a loop variable squared, or ...
Main exception: loop variable i doubles every time, body complexity depends on i

Doing the sums

In our example:

- The inner loop's complexity is $\mathrm{O}(\mathrm{i})$
- In the outer loop, i ranges over $1,2,4,8, \ldots, 2^{\text {a }}$

Instead of rounding up, we will add up the time for all the iterations of the loop:

$$
\begin{aligned}
& 1+2+4+8+\ldots+2^{a} \\
& =2 \times 2^{a}-1<2 \times 2^{a}
\end{aligned}
$$

Since $2^{\mathrm{a}} \leq \mathrm{n}$, the total time is at most 2 n , which is $O(n)$

A last example

for (int i = 1; i <= n; i *= 2) \{ for (int j = 0; j < n*n; j++) for (int k = 0; k <= j; k++)
// O(1)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{n}$; $\mathrm{j}+\mathrm{+}$)
// O(1)
\}

The outer loop runs $\mathrm{O}(\log \mathrm{n})$ times

A last example

The j-loop
runs n^{2} times
for (nt i $=1 ; i<=n ; i x=-, ~ \imath$ for (int $j=0 ; j<n * n ; j++$) for (int $k=0 ; k<=j ; k++$) // O(1)
for (int $j=0 ; j<n ; j++$.
// O(1)
\}
This loop is $\mathrm{O}(\mathrm{n})$
$\mathrm{k}<=\mathrm{j}<\mathrm{n} * \mathrm{n}$ so this loop is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Total: $\mathrm{O}(\log \mathrm{n}) \times\left(\mathrm{O}\left(\mathrm{n}^{2}\right) \times \mathrm{O}\left(\mathrm{n}^{2}\right)+\mathrm{O}(\mathrm{n})\right)$
$=O\left(n^{4} \log n\right)$

A trick: sums are almost integrals

$$
\sum_{x=a}^{b} f(x) \approx \int_{a}^{b} f(x)
$$

For example:

$$
\sum_{i=0}^{n} i=n(n+1) / 2 \quad \int_{0}^{n} x d x=n^{2} / 2
$$

Not quite the same, but close!
This trick is accurate enough to give you the right complexity class
See: "Finite calculus: a tutorial for solving nasty sums"

Summary

Big O complexity

- Calculate runtime without doing hard sums!
- Lots of "rules of thumb" that work almost all of the time
- Very occasionally, still need to do hard sums :(
- Ignoring constant factors: seems to be a good tradeoff
Weiss chapter 5

[^0]: \}
 return null;

