
  

Complexity
(Weiss chapter 5)



  

Complexity

This lecture is all about how to describe the 
performance of an algorithm
Last time we had three versions of the 
file-reading program. For a file of size n:
● The first one needed to copy n2/2 characters
● The second one needed to copy n2/200 characters
● The third needed to copy 2n characters

We worked out these formulas, but it was 
a bit of work – now we'll see an easier way



  

Big idea:
ignore constant factors!



  

Why do we ignore constant factors?

Well, when n is 1000000...
● log2 n is 20
● n is 1000000
● n2 is 1000000000000
● 2n is a number with 300,000 digits...

Given two algorithms:
● The first takes 1000000 log2 n steps to run
● The second takes 0.00000001 × 2n

The first is miles better!
Constant factors normally don't matter



  

Big O notation

Instead of saying...
● The first implementation copies n2/2 characters
● The second copies n2/200 characters
● The third copies 2n characters

We will just say...
● The first implementation copies O(n2) characters
● The second copies O(n2) characters
● The third copies O(n) characters

O(n2) means “proportional to n2”
(almost)



  

Time complexity

With big-O notation, it doesn't matter 
whether we count steps or time!
Suppose an algorithm takes n2/2 steps, 
which is O(n2)
And suppose each step takes 100ns to run
Then the algorithm takes 50n2 ns, which 
is also O(n2)!
We say that the algorithm has O(n2) time 
complexity or simply complexity



  

Do we really need
big O notation?



  

What happens without big O?

How many steps does this function take 
on an array of length n (in the worst case)?
Object search(Object[] a, Object x) {

  for(int i = 0; i < a.length; i++) {

    if (a[i].equals(target))

      return a[i];

  }

  return null;

}

Assume that
loop body takes

1 step



  

What happens without big O?

How many steps does this function take 
on an array of length n (in the worst case)?
Object search(Object[] a, Object x) {

  for(int i = 0; i < a.length; i++) {

    if (a[i].equals(target))

      return a[i];

  }

  return null;

}

Answer:
n



  

What about this one?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < a.length; j++)

      if (a[i].equals(a[j]) && i != j)

        return false;

  return true;

}



  

What about this one?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < a.length; j++)

      if (a[i].equals(a[j]) && i != j)

        return false;

  return true;

}

Outer loop runs n times
Each time, inner loop

runs n times

Total: n × n = n2



  

What about this one?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      if (a[i].equals(a[j]))

        return false;

  return true;

}

Loop runs to i
instead of n



  

Some hard sums

When i = 0, inner loop runs 0 times
When i = 1, inner loop runs 1 time
…
When i = n-1, inner loop runs n-1 times

Total:

●          = 0 + 1 + 2 + … + n-1

which is n(n-1)/2

∑
i=0

n−1

i



  

What about this one?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      if (a[i].equals(a[j]))

        return false;

  return true;

}

Answer:
n(n-1)/2



  

What about this one?

void something(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      for (int k = 0; k < j; k++)

        “something that takes 1 step”

}



  

More hard sums

Outer loop:
i goes from 0 to n-1

Middle loop:
j goes from 0 to i-1

Inner loop:
k goes from 0 to j-1

Counts: how many values i, j, k where
0 ≤ i < n, 0 ≤ j < i, 0 ≤ k ≤ j

∑
i=0

n−1

∑
j=0

i−1

∑
k=0

j−1

1



  

More hard sums

Counts: how many values i, j, k where
0 ≤ i < n, 0 ≤ j < i, 0 ≤ k ≤ j

∑
i=0

n−1

∑
j=0

i−1

∑
k=0

j−1

1

I have no idea
how to solve this!

Wolfram Alpha says it's
n(n-1)(n-2)/6



  

What about this one?

void something(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      for (int k = 0; k < j; k++)

        “something that takes 1 step”

}

Answer:
n(n-1)(n-2)/6,

apparently



  

This is just horrible!
Isn't there a better way?



  

Using big O complexity

void something(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      for (int k = 0; k < j; k++)

        “something that takes 1 step”

} Three nested loops,
all running from
0 to at most n...
Answer: O(n3).



  

Why ignore constant factors?

We lose some precision by throwing away 
constant factors
● ...you probably do care about a factor of 100 

performance improvement

On the other hand, life gets much simpler:
● A small phrase like O(n2) tells you a lot about how 

the performance scales when the input gets big
● It turns out to be much easier to calculate big-O 

complexity than a precise formula

Big O is normally a good compromise!



  

Big O, formally

Big O measures the growth of a 
mathematical function
● Typically a function T(n) giving the number of 

steps taken by an algorithm on input of size n
● But can also be used to measure space complexity 

(memory usage) or anything else

So for the file-copying program:
● T(n) = n2/2
● T(n) is in O(n2)



  

Big O, formally

What does it mean to say “T(n) is O(n2)”?
We could say it means T(n) is 
proportional to n2

● i.e. T(n) = kn2 for some k

But this is too restrictive!
● What if e.g. T(n) = kn(n-1), or T(n) = kn2 + 1?

We still want it to be O(n2)!



  

Big O, formally

Instead, we say that T(n) is O(n2) if:
● T(n) ≤ kn2 for some k,

i.e. T(n) is proportional to n2 or lower!
● This only has to hold for big enough n:

i.e. for all n above some threshold n0

If you draw the graphs of T(n) and kn2, at 
some point the graph of kn2 must 
permanently overtake the graph of T(n)
● In other words, T(n) grows more slowly than kn2

Note that big-O notation is allowed to 
overestimate the complexity!



  

An example: n2 + 2n + 3 is O(n2)

n2+2n+3 ≤ 2n2

for n ≥ 3



  

Exercises

● Is n2 + 2n + 3 in O(n3)?
● Is it in O(n)?
● Is 3n + 5 in O(n)?
● Why do we need the threshold?



  



  



  

Growth rates
Imagine that we double the input size from n to 
2n.
If an algorithm is...
● O(1), then it takes the same time as before
● O(log n), then it takes a constant amount more
● O(n), then it takes twice as long
● O(n log n), then it takes twice as long plus a little bit more
● O(n2), then it takes four times as long

If an algorithm is O(2n), then adding one element 
makes it take twice as long
Big O tells you how the performance of an 
algorithm is affected by the input size



  

Adding big O (a hierarchy)

O(1) < O(log n) < O(n) < O(n log n) < 
O(n2) < O(n3) < O(2n)
When adding a term lower in the 
hierarchy to one higher in the hierarchy, 
the lower-complexity term disappears:

O(1) + O(log n) = O(log n)
O(log n) + O(nk) = O(nk) (if k ≥ 0)
O(nj) + O(nk) = O(nk), if j ≤ k
O(nk) + O(2n) = O(2n)



  

An example: n2 + 2n + 3 is O(n2)

Use hierarchy:
n2 + 2n + 3

=
O(n2) + O(n) + O(1)

=
O(n2)



  

Quiz

What are these in Big O notation?
● n2 + 11
● 2n3 + 3n + 1
● n4 + 2n



  

Just use hierarchy!

n2 + 11 = O(n2) + O(1) = O(n2)
2n3 + 3n + 1 = O(n3) + O(n) + O(1) = O(n3)
n4 + 2n = O(n4) + O(2n) = O(2n)



Multiplying big O

O(this) × O(that) = O(this × that)
● e.g., O(n2) × O(log n) = O(n2 log n)

You can drop constant factors:
● k × O(f(n)) = O(f(n)), if k is constant
● e.g. 2 × O(n) = O(n)

(Exercise: show that these are true)



Quiz

What is  (n2 + 3)(2n × n) + log10 n
in Big O notation?



Answer

(n2 + 3)(2n × n) + log10 n
= O(n2) × O(2n × n) + O(log n)
= O(2n × n3) + O(log n) (multiplication)
= O(2n × n3) (hierarchy)

log
10

n = log n / log 10
i.e. log n times a
constant factor



Complexity of a program

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < a.length; j++)

      if (a[i].equals(a[j]) && i != j)

        return false;

  return true;

}



Complexity of a program

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < a.length; j++)

      if (a[i].equals(a[j]) && i != j)

        return false;

  return true;

}
Loop body:

O(1)

Inner loop runs
n times:

O(n) × O(1) = O(n)

Outer loop runs
n times:

O(n) × O(n) = O(n2)



Complexity of loops

The complexity of a loop is:
the number of times it runs
times the complexity of the body



What about this one?

void function(int n) {

  for(int i = 0; i < n*n; i++)

    for (int j = 0; j < n/2; j++)

      “something taking O(1) time”

}



What about this one?

void function(int n) {

  for(int i = 0; i < n*n; i++)

    for (int j = 0; j < n/2; j++)

      “something taking O(1) time”

}

Loop body:
O(1)

Inner loop runs
n/2 = O(n) times:
O(n) × O(1) = O(n)

Outer loop runs
n2 times:

O(n2) × O(n) = O(n3)



Here's a new one

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      if (a[i].equals(a[j]))

        return false;

  return true;

}



Here's a new one

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      if (a[i].equals(a[j]))

        return false;

  return true;

}
Body is O(1)

Inner loop is
i × O(1) = O(i)??
But it should be
in terms of n?



Here's a new one

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      if (a[i].equals(a[j]))

        return false;

  return true;

}
Body is O(1)

i < n, so i is O(n)
So loop runs O(n)
times, complexity:
O(n) × O(1) = O(n)



Here's a new one

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      if (a[i].equals(a[j]))

        return false;

  return true;

}
Body is O(1)

i < n, so i is O(n)
So loop runs O(n)
times, complexity:
O(n) × O(1) = O(n)

Outer loop runs
n times:

O(n) × O(n) = O(n2)



  

The example from earlier

void something(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      for (int k = 0; k < j; k++)

        “something that takes 1 step”

}
i < n, j < n, k < n,

so all three loops run O(n) times
Total runtime is

O(n) × O(n) × O(n) × O(1) = O(n3)



What's the complexity?

void something(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 1; j < a.length; j *= 2)

      … // something taking O(1) time

}



What's the complexity?

void something(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 1; j < a.length; j *= 2)

      … // something taking O(1) time

}

A loop running through i = 1, 2, 4, …, n 
runs O(log n) times!

Inner loop is
O(log n)

Outer loop is
O(n log n)



While loops

long squareRoot(long n) {

    long i = 0;

    long j = n+1;

    while (i + 1 != j) {

        long k = (i + j) / 2;

        if (k*k <= n) i = k; 

        else j = k; 

    }

    return i;

}

Each iteration takes
O(1) time...

but how many times
does the loop run?



While loops

long squareRoot(long n) {

    long i = 0;

    long j = n+1;

    while (i + 1 != j) {

        long k = (i + j) / 2;

        if (k*k <= n) i = k; 

        else j = k; 

    }

    return i;

}

Each iteration
takes O(1) time

...and halves
j-i, so O(log n)

iterations



Summary: loops

Basic rule for complexity of loops:
● Number of iterations times complexity of body
● for (int i = 0; i < n; i++) …: n iterations
● for (int i = 1; i ≤ n; i *= 2): O(log n) iterations
● While loops: same rule, but can be trickier to 

count number of iterations

If the complexity of the body depends on 
the value of the loop counter:
● e.g. O(i), where 0 ≤ i < n
● round it up to O(n)!



Sequences of statements

What's the complexity here?
(Assume that the loop bodies are O(1))
  for (int i = 0; i < n; i++) …
  for (int i = 1; i < n; i *= 2) …



Sequences of statements

What's the complexity here?
(Assume that the loop bodies are O(1))
  for (int i = 0; i < n; i++) …
  for (int i = 1; i < n; i *= 2) …

First loop: O(n)
Second loop: O(log n)
Total: O(n) + O(log n) = O(n)
For sequences, add the complexities!



A familiar scene

int[] array = {};
for (int i = 0; i < n; i++) {
int[] newArray =
new int[array.length+1];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Assume that
each statement
takes O(1) time



A familiar scene

int[] array = {};
for (int i = 0; i < n; i++) {
int[] newArray =
new int[array.length+1];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
} Inner loop

O(n)

Rest of loop body
O(1),

so loop body
O(1) + O(n) = O(n)

Outer loop:
n iterations,
O(n) body,
so O(n2)



A familiar scene, take 2

int[] array = {};
for (int i = 0; i < n; i+=100) {
int[] newArray =
new int[array.length+100];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}



A familiar scene, take 2

int[] array = {};
for (int i = 0; i < n; i+=100) {
int[] newArray =
new int[array.length+100];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Outer loop:
n/100 iterations,

which is O(n)
O(n) body,

so O(n2) still



A familiar scene, take 3

int[] array = {0};
for (int i = 1; i <= n; i*=2) {
int[] newArray =
new int[array.length*2];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}



A familiar scene, take 3

int[] array = {0};
for (int i = 1; i <= n; i*=2) {
int[] newArray =
new int[array.length*2];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
} Outer loop:

log n iterations,
O(n) body,

so O(n log n)??



A familiar scene, take 3

int[] array = {0};
for (int i = 1; i <= n; i*=2) {
int[] newArray =
new int[array.length*2];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Here we
“round up”

O(i) to O(n).
This causes an
overestimate!



A complication

Our algorithm has O(n) complexity, but we've 
calculated O(n log n)
● An overestimate, but not a severe one

(If n = 1000000 then n log n = 20n)
● This can happen but is normally not severe
● To get the right answer: do the maths

Good news: for “normal” loops this doesn't 
happen
● If all bounds are n, or n2, or another loop variable, or a 

loop variable squared, or …

Main exception: loop variable i doubles every 
time, body complexity depends on i



Doing the sums

In our example:
● The inner loop's complexity is O(i)
● In the outer loop, i ranges over 1, 2, 4, 8, …, 2a

Instead of rounding up, we will add up the 
time for all the iterations of the loop:

1 + 2 + 4 + 8 + … + 2a

= 2 × 2a – 1 < 2 × 2a

Since 2a ≤ n, the total time is at most 2n, 
which is O(n)



A last example

for (int i = 1; i <= n; i *= 2) {
   for (int j = 0; j < n*n; j++)
      for (int k = 0; k <= j; k++)
         // O(1)
   for (int j = 0; j < n; j++)
      // O(1)
}



A last example

for (int i = 1; i <= n; i *= 2) {
   for (int j = 0; j < n*n; j++)
      for (int k = 0; k <= j; k++)
         // O(1)
   for (int j = 0; j < n; j++)
      // O(1)
}

Total: O(log n) × (O(n2) × O(n2) + O(n))
= O(n4 log n)

k <= j < n*n
so this loop is

O(n2)

The outer loop
runs O(log n)

times

This loop is
O(n)

The j-loop
runs n2 times



A trick: sums are almost integrals

For example:

Not quite the same, but close!
This trick is accurate enough to give you the right 
complexity class
See: “Finite calculus: a tutorial for solving nasty sums”

∑
x=a

b

f (x)≈∫
a

b

f ( x)

∑
i=0

n

i=n(n+1)/2 ∫
0

n

x dx=n2 /2



Summary

Big O complexity
● Calculate runtime without doing hard sums!
● Lots of “rules of thumb” that work almost all of 

the time
● Very occasionally, still need to do hard sums :(
● Ignoring constant factors: seems to be a good 

tradeof

Weiss chapter 5
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