
Exam (with answers)
Data structures DAT036/DAT037/DIT960

Time Thursday 20th August 2015, 14:00–18:00

Place Maskinhuset

Course responsible Nick Smallbone, tel. 0707 183062

The exam consists of six questions.

For a 3 (Chalmers) or G (GU), you need to answer three questions correctly.
You can ignore any parts labelled “For a 4” or “For a 5/VG”.

For a 4 (Chalmers only), you need to answer four questions correctly.
You must also answer all parts labelled “For a 4” in those questions but can
ignore any parts labelled “For a 5/VG”.

For a 5 (Chalmers) or VG (GU), you need to answer five questions correctly.
You must also answer all parts labelled “For a 4/5/VG” in those questions.

For an answer to be considered correct, it must contain no major mistakes.
Minor mistakes might be accepted, but this is at the discretion of the marker.

When a question asks for pseudocode, you can use a mixture of English and
programming notation to describe your solution, and should give enough detail
that a competent programmer could easily implement your solution.

Allowed aids One A4 piece of paper of hand-written notes, which should be
handed in after the exam. You may write on both sides.

You may also bring a dictionary.

Note Begin each question on a new page.

Write your anonymous code (not your name) on every page.

Good luck!

1. Consider the following algorithm for sorting an array a with the help of a
priority queue.

q = new priority queue
for every element x in a
 q.insert(x)
i = 0
while q is not empty
 a[i] = q.findMinimum()
 q.deleteMinimum()
 i = i+1

Assuming that n is the length of the input array, what is the big-O
complexity of this algorithm, if the priority queue is implemented
using:

a) an unsorted array,

O(n2). Insert takes (amortised) O(1) time so the for-loop takes O(n)
time. But findMinimum and deleteMinimum take O(n) time so the
while-loop takes O(n2) time.

b) a binary heap,

O(n log n). Insert takes (amortised) O(log n) so the for-loop takes
O(n log n) time. DeleteMinimum also takes O(log n) so the while-
loop takes O(n log n) time.

c) For 4/5/VG only: a sorted array?

O(n2). Insert takes O(n) time so the for-loop takes O(n2) time.

2. Consider the following hash table implemented using linear probing,
where the hash function is the identity, h(x) = x (modulo 10).

0 1 2 3 4 5 6 7 8 9

10 1 11 14 5 XXX 7 18

a) The value that was previously at index 6 has been deleted, which is
represented by the XXX in the hash table.

Which value might have been stored there, before it was deleted? There
may be several correct answers, and you should write down all of them.

A) 26 B) 2 C) 17 D) 24 E) 6 F) 13

Because of probing, an element is either stored at the index
corresponding to its hash or a greater index. So the deleted value's hash
could have been 4, 5 or 6. The correct answers are A (26), D (24), E (6).

b) For 4/5/VG only:
Hash tables typically have better performance than balanced binary
search trees. Even so, both are widely used in practice. One reason is that
a hash table does not support all the operations that a BST does.

Give an example of an operation which can be efficiently implemented
for a binary search tree but not for a hash table.

One example: find the smallest element in the hash table. (Or get the
elements in increasing order.)

3. You are given the following weighted graph:

a) Suppose we perform Dijkstra's algorithm starting from node D. In
which order does the algorithm visit the nodes, and what is the
computed distance to each of them?

Node D A B C F G E H

Distance 0 1 2 3 4 6 8 9

b) In its basic form, Dijkstra's algorithm computes the distance from one
node to all other nodes, but it doesn't tell you the shortest path.

Suppose you have run Dijkstra's algorithm on a graph, in other words
you know the shortest distance from a node x to all other nodes in the
graph. How can you use this information to find the shortest path
from x to another node y?

Answer either in pseudocode or English. If you want you can use
finding the shortest path from D to H as an example – but your
answer should make it clear how to do this for any graph.

The idea: work out which node is immediately before y on the shortest
path.

To do this we look at all nodes z that have an edge to y. Node z is
immediately before y on the shortest path if: distance from x to z +
length of edge from z to y = distance from x to y. Having found z, we
recursively find the shortest path to z, and then follow the edge from z
to y.

For example, to go from D to H (distance 9), we look at nodes E and
G:

▪ Distance from D to E + length of edge from E to H = 8 + 1 = 9

▪ Distance from D to G + length of edge from G to H = 6 + 5 = 11

So we should take the shortest path to E (which we find by recursion),
and then follow the edge from E to H.

4. In this question you should design a data structure that is almost a
priority queue, except that you can find and remove the second-smallest
element. It should support the following operations:

◦ new(): create a new, empty priority queue

◦ insert(x): add an integer x to the priority queue

◦ findSecondSmallest(): return the second-smallest element

◦ deleteSecondSmallest(): remove the second-smallest element

You may freely use standard data structures and algorithms from the
course in your solution, without explaining how they are implemented.

You should say what design or existing data structure you have chosen,
and give pseudocode for each of the operations – you don't need to write
fully detailed Java code.

The operations must have the following time complexities:

◦ For a 3/G:
O(1) for new,
O(log n) for insert,
O(log n) for findSecondSmallest
O(log n) for deleteSecondSmallest
(where n is the number of elements in the priority queue)

One way is to use a priority queue and simply remove the smallest
element whenever you want to look at the second smallest
(remembering to put it back afterwards). So findSecondSmallest
would go:

x = deleteMinimum()
y = findMinimum()
insert(x)
return y

and deleteSecondSmallest would go:

x = deleteMinimum()
deleteMinimum()
insert(x)

◦ For a 4:
as for G but the complexity of findSecondSmallest must be O(1).

Use a priority queue and store all the elements except the smallest in
it. Store the smallest element in a separate variable. If the queue is
called q and the variable is called min, then findSecondSmallest is
simply q.findMinimum() and deleteSecondSmallest is
q.deleteMinimum(). For insert(x) you have to check if the inserted
element is the smallest element or not:

if x < min then
 q.insert(min)
 min = x
else
 q.insert(x)

For a 5/VG (you may wish to answer the earlier part first):
Generalise your data structure so that it supports finding and removing
the kth-smallest element, where k is a constant chosen by the user when
the data structure is created. The time complexity should be:

O(1) for new and findKthSmallest;
O(log n) for insert and deleteKthSmallest.

Hint for a 5/VG: it might help to store the k smallest elements separately
from the rest.

The idea is similar to the one for a 4. We have a min heap q for all the
elements except the k-1 smallest ones. We store the k-1 smallest elements
in a max heap smallest. findKthSmallest is q.findMinimum and
deleteKthSmallest is q.deleteMinimum. For insert(x), we have to
check if the new element is one of the k-1 smallest or not:

if smallest.size() < k then
 smallest.insert(x)
else if smallest.size() = k and x < smallest.findMaximum() then
 q.insert(smallest.deleteMaximum())
else
 q.insert(x)

5. Have a look at the following three binary trees.

Tree A:

Tree B:

Tree C:

a) One of these trees is an AVL tree. Which one?

C is an AVL tree. A is not a binary search tree (25 > 12) and B is not
balanced enough (height of left child of root = 4, height of right child of
root = 2)

b) Insert 30 into the tree using the AVL insertion algorithm. Write down the
final tree.

After inserting 30 using BST insert, the tree is unbalanced (root's left
child height = 4, right child height = 2). It's a left-right tree so a double
rotation fixes it:

6. Suppose we are given the following type of binary search trees in Haskell:

data Tree a = Nil | Node a (Tree a) (Tree a)

a) Implement a Haskell function

deleteGreater :: Ord a => a -> Tree a -> Tree a

which takes an element x and a tree t, and returns t with all elements
greater than or equal to x removed. For example on a tree t containing
1, 2, 3, 4, 5, deleteGreater 3 t should return a tree containing 1 and 2.

The complexity of your function should be O(height of tree), i.e.,
O(log n) for balanced trees, O(n) for unbalanced trees.

Hint: the correct solution is very small – mine is four lines of code.
Try drawing some example trees and look for the general pattern of what
is deleted. Think of what happens with a single node – which parts
should be kept and which parts should be deleted.

Suppose we call deleteGreater x t. If the root node's value is ≥ x then
the entire right subtree must also be ≥ x. We should therefore delete the
right subtree and the root and recurse into the left subtree. If the root's
value is < x then the left subtree must also be < x. So we should keep the
root and the left subtree and recurse into the right subtree.

deleteGreater _ Nil = Nil
deleteGreater x (Node y l r)
 | y x = deleteGreater x l≥
 | otherwise = Node y l (deleteGreater x r)

b) For 5/VG only:
Does your function work on AVL trees, i.e., does it preserve the AVL
invariant? If yes, explain why; if no, give an example that shows why not.

No. Take tree C from q5. If we do deleteGreater 29 t, then the entire
right subtree is deleted and the tree is no longer balanced.

