
Priority queues
(chapters 6.9, 20.1 – 20.2)

Trees
(chapter 17)

Priority queues

A priority queue has three operations:
● insert: add a new element
● find minimum: return the smallest element
● delete minimum: remove the smallest element

Similar idea to a stack or a queue, but:
● you get the smallest element out instead of the

first-added (queue) or last-added (stack)

(Java: PriorityQueue class)

Applications

A simulation – models events happening
at a particular time
● “At 10am the person entered the shop”

When an event happens, it can cause
more events to happen in the future
● “When a person enters the shop, 1 minute later

they pick up some milk”

Applications – simulation

Keep a priority queue of future events
● “At 10am a person will enter the shop”

Simulator's job: remove earliest event and
run it, then repeat
● In the priority queue, earlier events will be

counted as “smaller” than later events

When we run that event, it can in turn
add more events to the priority queue
● When a person enters the shop, add an event “the

person picked up some milk” to the priority queue
at a time of 1 minute later

Applications

Sorting:
● Start with an empty priority queue
● Add each element of the input list in turn
● As long as the priority queue is not empty, find

and remove the smallest element
● You get all elements out in ascending order!

Heapsort is an in-place version of this
(next lecture)

This lecture

An efficient implementation of priority
queues, the binary heap, with the help of:
● Invariants
● Trees

We'll wander off into those two topics
and then come back to priority queues
Also, hopefully, a bit of: how to think like a
data structure designer
● I will try to explain why heaps are the way they are

rather than just how they work

An inefficient priority queue

Idea 1: implement a priority queue as a
dynamic array
● Insert: add new element to end of array

O(1)
● Find minimum: linear search through array

O(n)
● Delete minimum: remove minimum element

O(n)
Finding the minimum is quite expensive
though. Another idea?

An inefficient priority queue

Idea 2: use a sorted array
● Insert: insert new element in right place

O(n)
● Find minimum: minimum is first element

O(1)
● Delete minimum: remove first element

O(n)
Finding the minimum is cheap! Yay!
But... insertion got expensive :(
Deletion is also expensive...

An inefficient priority queue

Idea 3: implement a priority queue as a
reverse-sorted array
● Insert: insert new element in right place

O(n)
● Find minimum: minimum is last element

O(1)
● Delete minimum: remove last element

O(1)
A bit better, but O(n) insertion is not so
good...

A detour: invariants

“The array is reverse-sorted” is an example
of an invariant of a data structure
● An invariant is a property that always holds in our

implementation of the data structure
● Something the data structure designer picks that

helps implementing the data structure

Insert, find minimum and delete minimum can
assume that the array is already reverse-
sorted...
● ...but they must make sure that the array remains

reverse-sorted afterwards (they must preserve the
invariant)

Checking the invariant

What happens if you break the invariant?
● e.g., insert simply adds the new element to the

end

Answer: nothing goes wrong straight
away, but later operations might fail
● A later find minimum might return the wrong

answer!

These kind of bugs are a nightmare to
track down!
Solution: check the invariant

Checking the invariant

Define a method
bool invariant()

that returns true if the invariant holds
● in this case, if the array is reverse-sorted

Then, in the implementation of every
operation, do

assert invariant();

This will throw an exception if the invariant
doesn't hold!
(Note: in Java, must run program with -ea)

Invariants in Haskell

Define a function
invariant :: Whatever Bool→

Then add an extra case to all operations:
whatever x
 | not (invariant x) = error “oops”
whatever x = …

[Perhaps remove this case when you've
finished testing your code]

Checking invariants

Writing down and checking invariants
will help you find bugs much more easily
● I'd say most data structure bugs involve breaking

an invariant
● Even if you don't think about an invariant, if

your data structure is at all fancy there is
probably one hiding there!

● Almost all programming languages support
assertions – use them to check invariants and
make your life easier

Nick's brief guide to
designing data structures

How not to do it

Here is how not to design a data
structure:

1. Take the operations you have to implement
2. Think very hard about how to implement them
3. Bash something together that seems to work

Because:
● You will probably have lots of bugs
● You will probably miss the best solution

Looking back on older designs

We implemented bounded queues by an
array and a pair of indices front and back
● The contents of the queue is the elements between

index front and index back

Once we decide on this representation,
there is only one way to implement the
queue!
● Here, “representation” means – what datatype we

use, plus what an instance of that datatype
means as a queue (in this case, what the queue
contains)

Looking back on older designs

We represented a priority queue by an
array with the invariant that the array is
reverse-sorted
Once we choose this invariant, there is
only one way to implement it!

Data structure design

How to design a data structure:
● Pick a representation

Here: we represent the priority queue by an array
● Pick an invariant

Here: the array is reverse-sorted

Once you have the right representation
and invariant, the operations often almost
“design themselves”!
● There is often only one way to implement them

You could say...
data structure = representation + invariant

Picking a representation and invariant

How do you know which representation and
invariant to go for?
Good plan: have a first guess, see if the
operations work out, then tweak it
● Queues: at first we tried a dynamic array, but there

was no way to efficiently remove items, so we
switched to a circular array

● Priority queues: at first we tried a sorted array, but
then remove minimum needed to delete the first
element (inefficient), so we switched to a reverse-
sorted array

Takes practice!

More on invariants

A strong invariant like “the array is reverse-sorted”:
● Can make it easier to get information from the data structure

(the data is more structured)
● Can make it harder to update the data structure (you have to

preserve the invariant)

In our case:
● find minimum becomes easier (array is sorted)
● insert becomes harder (must make sure array is sorted

afterwards)

A good invariant will provide some extra structure
that makes the operations you want easier
● sorting the array makes it easier to find the minimum

Trees

Trees

A tree is a hierarchical data structure
● Each node can have several children but only has one

parent
● The root has no parents; there is only one root

Example: directory hierarchy

Binary trees

Most often we use binary trees, where
each node has at most two children
class Node<E> {
 E value;
 Node<E> left, right;
}

data Tree a
 = Node a (Tree a) (Tree a)
 | Nil

Can be null

(left) child
of hamster

parent of gorilla
ancestor of ape

root

leafsiblings

owlowl

hamsterhamster

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

left subtree or branch
of owl

Terminology

descendant of
hamster

apeape

path
node

Terminology
The depth of a node is the distance from the root
The height of a tree is the number of levels in the tree
The size of a tree is the number of nodes in it

depth 1
height 3

size 4

owlowl

hamsterhamster

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Balanced trees

A tree can be balanced or unbalanced

If a tree of size n is
● balanced, its height is O(log n)
● unbalanced, its height could be O(n)

Many tree algorithms have complexity O(height of
tree), so are efficient on balanced trees and less so on
unbalanced trees
Normally: balanced trees good, unbalanced bad!

Heaps

Heaps – representation

A heap implements a priority queue as a
tree. Here is a tree:

This is not yet a heap. We need to add an
invariant that makes it easy to find the
minimum element.

28

29 20

18 8 74 39

37 32 89 66

The heap property

A tree satisfies the heap property if the
value of each node is less than (or equal
to) the value of its children:

Where can we find the smallest element?

8

18 29

37 32 74 89

20 28 39 66

Root node is the
smallest –

can find minimum
in O(1) time

Why the heap property

Why did we pick this invariant? One reason:
● It puts the smallest element at the root of the tree, so

we can find it in O(1) time

Why not just have the invariant “the root node
is the smallest”? Because:
● Trees are a recursive structure – the children of a node

are also trees
● It's then a good rule of thumb to have a recursive

invariant – each node of the tree should satisfy the
same sort of property

● In this case, instead of “the root node is smaller than its
descendants”, we pick “each node is smaller than its
descendants”

Binary heap

A binary heap is a complete binary tree
that satisfies the heap property:

Complete means that all levels except the
bottom one are full, and the bottom level
is filled from left to right (see above)

8

18 29

37 26 76 32 74 89

20 28 39 66

Why completeness?

There are a couple of reasons why we
choose to have a complete tree:
● It makes sure the tree is balanced
● When we insert a new element, it means there is

only one place the element can go – this is one
less design decision we have to make

There is a third reason which trumps the
first two, but that will have to wait for
next time!

Binary heap invariant

The binary heap invariant:
● The tree must be complete
● It must have the heap property (each node is less

than or equal to its children)

Remember, all our operations must
preserve this invariant
Once we have picked this invariant, there
is only one sensible way to implement the
operations!

Heap or not?

8

18 29

20 28 66

8

18 29

20 28

8

28 29

20 18 39 66

8

8 78

20 95 85

39

Heap or not?

8

18 29

20 28 66

8

18 29

20 28

8

28 29

20 18 39 66

8

8 78

20 95 85

39

No:
not complete

No:
not complete

No:
28 > 18Yes

Adding an element to a binary heap

Step 1: insert the element at the next
empty position in the tree

This might break the heap invariant!
In this case, 12 is less than 66, its parent.

8

18 29

37 26 76 32 74 89

20 28 39 66

12

An aside

To modify a data structure with an
invariant, we have to
● modify it,
● while preserving the invariant

Often it's easier to separate these:
● first modify the data structure, possibly breaking

the invariant in the process
● then “repair” the data structure, making the

invariant true again

This is what we are going to do here

Adding an element to a binary heap

Step 2: if the new element is less than its
parent, swap it with its parent

8

18 29

37 26 76 32 74 89

20 28 39 66

12

Adding an element to a binary heap

Step 2: if the new element is less than its
parent, swap it with its parent

The invariant is still broken, since 12 is
less than 29, its new parent

8

18 29

37 26 76 32 74 89

20 28 39 12

66

Adding an element to a binary heap

Repeat step 2 until the new element is
greater than or equal to its parent.

Now 12 is in its right place, and the
invariant is restored. (Think about why
this algorithm restores the invariant.)

8

18 12

37 26 76 32 74 89

20 28 39 29

66

Why this works

At every step, the heap property almost
holds except that the new element might
be less than its parent
After swapping the element and its
parent, still only the new element can be
in the wrong place (why?)

8

18 29

37 26 76 32 74 89

20 28 39 12

66

Removing the minimum element

To remove the minimum element, we are
going to follow a similar scheme as for
insertion:
● First remove the minimum (root) element from the

tree somehow, breaking the invariant in the process
● Then repair the invariant

Because of completeness, we can only really
remove the last (bottom-right) element
from the tree
● Solution: first swap the root element with the last

element, then remove the last element

Removing the minimum element

Step 1: replace the root element with the
last element in the tree, and remove the
last element

The invariant is broken, because 66 is
greater than its children

66

18 12

37 26 76 32 74 89

20 28 39 29

Removing the minimum element

Step 2: if the moved element is greater
than its children, swap it with its least
child

(Why the least child in particular?)

66

18 12

37 26 76 32 74 89

20 28 39 29

Removing the minimum element

Step 2: if the moved element is greater
than its children, swap it with its least
child

(Why the least child in particular?)

12

18 66

37 26 76 32 74 89

20 28 39 29

Removing the minimum element

Step 3: repeat until the moved element is
less than or equal to its children

12

18 29

37 26 76 32 74 89

20 28 39 66

Sifting

Two useful operations we can extract from all
this
Sift up: if an element might be less than its
parent, i.e. needs “moving up” (used in insert)
● Repeatedly swap the element with its parent

Sift down: if an element might be greater than
its children, i.e. needs “moving down” (used
in removing the minimum element)
● Repeatedly swap the element with its least child

The book says percolate instead of sift

Binary heaps – summary so far

Implementation of priority queues
● Heap property – means smallest value is always at

root
● Completeness – means tree is always balanced

Complexity:
● find minimum – O(1)
● insert, delete minimum –

O(height of tree), O(log n) because tree is
balanced

Today

Main topic was binary heaps, but it was also
about how to design data structures
● The main task is not how to implement the operations,

but choosing the right representation and invariant
● These are the main design decisions – once you

choose them, lots of stuff falls into place
● Understanding them is the best way to understand a

data structure, and checking invariants is a very good
way of avoiding bugs!

But you also need lots of existing data
structures to get inspiration from!
● Many of these in the rest of the course

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

