
Hash tables
(19.1 – 19.3, 19.5 – 19.6)

Hash tables naively

A hash table implements a set or map
The plan: take an array of some size k
Define a hash function that maps values to
indices in the range {0,...,k-1}
● Example: if the values are integers, hash function

might be h(n) = n mod k

To find, insert or remove a value x, put it
in index h(x) of the array

Hash tables naively, example

Implementing a set of integers, suppose
we take a hash table of size 5 and a hash
function h(n) = n mod 5

Inserting 14 gives:

5 17 8
0 1 2 3 4

This hash table contains
{5, 8, 17}

145 17 8
0 1 2 3 4

Similarly, if we
wanted to find 8,
we would look it
up in index 3

A problem

This idea doesn't work.
What if we want to insert 12 into the set?

We should store 12 at index 2, but there's
already something there!
This is called a collision
Real hash tables are naive hash tables plus
tricks for dealing with and avoiding collisions!

5 17 8
0 1 2 3 4

Handling collisions: chaining

Instead of an array of elements, have an
array of linked lists (chains)
To add an element, calculate its hash and
insert it into the list at that index

0 1 2 3 4

5 17 8

Handling collisions: chaining

Instead of an array of elements, have an
array of linked lists (chains)
To add an element, calculate its hash and
insert it into the list at that index

Inserting 12
into the table

0 1 2 3 4

5 17 8

12

Performance of chained hash tables

Chained hash tables are fast if the chains
are small
● If the size is bounded, operations are O(1) time

But if the chains get big, everything gets
slow
● Can degrade to O(n) in the worst case

There are two cases when this can
happen!

Performance of chained hash tables

Case one: the hash table is too full
● If we try to store 1,000,000 values in an array of size 5,

some chains will be 200,000 long

Solution: expand the hash table
● If the hash table gets too full (a high load factor), allocate

a new array about twice as big (rehashing)

Problem: h(x) is specific to a particular size of
array
● Allow the hash function to return an arbitrary integer

and then take it modulo the array size:
h(x) = x.hashCode() mod array.size

● Hash function of an integer will just be the integer itself

Performance of chained hash tables

Case two: the hash function is lousy
● Worst case: h(x) is a constant function, e.g.

h(x) = 0
● Then all elements will end up in the same chain!
● h(x) needs to distribute values evenly

One helpful trick: make the hash table size always
be a prime number
● If h(x) always returns an even number, and the hash table

size is even, then the odd-numbered array indexes will never
be used!

● In general: same problem if h(x) is too often divisible by n,
and hash table size is divisible by n

● Using a prime number reduces the chance of this happening

Designing hash functions

A good hash function should distribute
values evenly
● h(x) has a roughly equal chance of being any

particular number
● That way, all chains will be roughly the same length!
● Also, similar values should not have similar hash

codes

Defining good hash functions is a black art!
● Weird heuristics that are semi-backed-up by theory

Defining a good hash function

What is bad about the following hash
function on strings?

Add together the character code of each character in the
string
(character code of a = 97, b = 98, c = 99 etc.)

Maps e.g. bass and bart to the same hash
code! (s + s = r + t)
Any anagrams will have the same hash code
Similar strings will be mapped to nearby hash
codes – does not distribute strings evenly

A hash function on strings

An idea: map strings to integers as follows:
128n + s0 · 128n-1 + s1 · 128n-2 + … + sn-1

where si is the code of the
character at index i
If all characters are ASCII
(character code 0 – 127), each
string is mapped to a different
integer!

An analogy

Suppose we want to define a hash function
for lists of digits from 0-9:
● [0,9,3,4,2,1] etc.

Idea: write out the digits as a single number
with a leading 1:
● hash([0,9,3,4,2,1]) = 1093421

(Without the leading 1 we would get the
same hash for e.g. [0,1] and [1])
The hash function on strings is doing exactly
this, only working in base 128 instead of
base 10

The problem

For performance, we will calculate the hash
using machine integers so the calculation

128n + s0 · 128n-1 + s1 · 128n-2 + … + sn-1,
will happen modulo 232 (integer overflow)
So the hash will only use the last few
characters!
Solution: replace 128 with another number,
e.g. 33

33n + s0 · 33n-1 + s1 · 33n-2 + … + sn-1

This is (almost) what Java uses for strings

Hashing composite values

class C { A a; B b; }

Use the same approach as for strings!
332 + 33 × h(a) + h(b)

This comes out quite nicely in code too:
int hash = 1;
hash = hash*33 + a.hashCode();
hash = hash*33 + b.hashCode();

Hash functions

This is called Bernstein hashing, it's only one
way of defining hash functions
● Bernstein discovered that using 33 as the constant

gives good distribution
● Why? Nobody knows!

Many hash functions are inspired by random
number generation algorithms
● The output of a good hash function should look

random so there are many similarities

Often pretty ad hoc!
● Lots of experimentation involved

Linear probing

Another way of dealing with collisions is
linear probing
Uses an array of values, like in the naïve
hash table
If you want to store a value at index i but
it's full, store it in index i+1 instead!
If that's full, try i+2, and so on
...if you get to the end of the array, wrap
around to 0

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Tom Dan Harry Sam Pete

[0]
[1]
[2]
[3]
[4]

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Sam Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Sam

Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Sam

Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3Pete

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Example of linear probing

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Pete Pete

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4] To find “Pete” (hash 3),

you must start at index 3
and work your way all the

way around to index 2

Searching with linear probing

To find an element under linear probing:
● Calculate the hash of the element, i
● Look at array[i]
● If it's the right element, return it!
● If there's no element there, fail
● If there's a different element there, search again

at index (i+1) % array.size

We call a group of adjacent non-empty
indices a cluster

Deleting with linear probing

Can't just remove
an element...

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Pete Pete

 Harry Harry

 Tom Tom

[0]
[1]
[2]
[3]
[4]

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

If we remove Harry,
Pete will be in the wrong cluster
and we won't be able to find him

Deleting with linear probing

Instead, mark it
as deleted
(lazy deletion)

Name Hash Hash % 5

"Tom" 84274 4

"Dan" 68465 0

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

 Dan Dan

 Sam Sam

 Pete Pete

 XXXXXXX XXXXXXX

 Tom Tom

[0]
[1]
[2]
[3]
[4]

The search algorithm
should skip over XXXXXXX

Deleting with linear probing

It's useful to think of the invariant here:
● Linear chaining: each element is found at the

index given by its hash code
● Linear probing: each element is found at the

index given by its hash code, or a later index in the
same cluster

Naive deletion will split a cluster in two,
which may break the invariant
Hence the need for an empty value that
does not mark the end of a cluster

Linear probing performance

To insert or find an element under linear probing,
you might have to look through a whole cluster of
elements
Performance depends on the size of these clusters:
● Small clusters – expected O(1) performance
● Almost-full array – O(n) performance
● If the array is full, you can't insert anything!

Thus you need:
● to expand the array and rehash when it starts getting full
● a hash function that distributes elements evenly

Same situation as with linear chaining!

Linear probing vs linear chaining

In linear chaining, if you insert many values with the
same hash, values with that hash become slower to
access but other hashes are unaffected
In linear probing, you get a cluster and values with
nearby hashes become slower to access too!
As the array gets close to 100% full, you get very long
clusters in the hash table and performance becomes
dreadful
Linear probing needs a much bigger array than linear
chaining for the same performance
But: as you don't need to also create list nodes, you can
create a bigger array in the same amount of memory

Probing vs chaining

load factor
(#elements /

array size)

#comparisons
(linear

probing)

#comparisons
(linear

chaining)

0 % 1.00 1.00
25 % 1.17 1.13
50 % 1.50 1.25
75 % 2.50 1.38
85 % 3.83 1.43
90 % 5.50 1.45
95 % 10.50 1.48

100 % — 1.50

200 % — 2.00

300 % — 2.50

Summary of hash table design

Several details to consider:
● Rehashing: resize the array when the load factor is too high
● A good hash function: need an even distribution
● Collisions: either chaining or probing

– Other alternatives to linear probing, e.g. quadratic probing
– Some sort of probing seems to be fastest

In return:
● Expected (average) O(1) performance if the hash function is

random (there are no patterns)
● Better performance in practice than BSTs
● Disadvantage: hash tables are unordered so you can't get the

elements in increasing order

Theoretical foundations a little shaky with common
hash functions, but very good practical performance.

Tail recursion
(not on exam)

How is recursion implemented?

When you call function B from function
A, the processor stops executing A and
starts executing B (obviously)
But when B returns, how does it know
how to go back to A?
Answer: the call stack
● Before A calls B, it will push a record of what it

was doing: the next instruction to be executed,
plus the values of all local variables

● When B returns, it will pop that record and see it
should return to A

Memory use of recursive functions

Calling a function pushes information on
the call stack
Hence recursive functions use memory in
the form of the call stack!
Total memory use from call stack:
O(maximum recursion depth)

A recursive function

void rec(int n) {
 if (n > 0) {
 System.out.println(n);
 rec(n-1);
 rec(n-1);
 }
}

How much memory does this function
use?
Don't forget to include the call stack!

A recursive function

void rec(int n) {
 if (n > 0) {
 System.out.println(n);
 rec(n-1);
 rec(n-1);
 }
}

How much memory does this function
use?
Don't forget to include the call stack!

n levels of recursion
n items on call stack
O(n) memory use!

Another recursive function

void hello() {
 System.out.println(“hello world”);
 hello();
}

What is this program supposed to do?
What does it actually do?

Another recursive function

void hello() {
 System.out.println(“hello world”);
 hello();
}

What is this program supposed to do?
● Print “hello world” over and over again

What does it actually do?
● Exception in thread "main"
java.lang.StackOverflowError

The recursive call to hello fills the call
stack!

Tail calls

void hello() {
 System.out.println(“hello world”);
 hello();
}

The recursive call is the last thing hello does
before it returns
This is called a tail call, and hello is tail recursive
Idea: don't bother pushing anything on the call
stack when making a tail call
● Since the function is going to do nothing

afterwards except return again

Tail call optimisation

In languages with tail call optimisation:
● Tail calls don't push anything onto the call stack so

don't use any stack space
● Hence tail recursion acts just like a loop
● This allows you to choose between using loops or

recursion, whichever is more natural for the
problem at hand

Most functional languages have TCO, since you're
supposed to use tail recursion instead of looping:
● e.g. Haskell, ML, Scala, Erlang, Scheme
● but also some other civilised languages e.g. Lua
Unfortunately many languages (e.g. Java) don't :(

Is this a tail call?

void hello(int n) {
 if (n > 0) {
 System.out.println(“hello world”);
 hello(n-1);
 }
}

Is this a tail call?

void hello(int n) {
 if (n > 0) {
 System.out.println(“hello world”);
 hello(n-1);
 }
}

Yes! - nothing more happens after the
recursive call to hello

Is this a tail call?

int fac(int n) {
 if (n == 0) return 1;
 else return n * fac(n-1);
}

Is this a tail call?

int fac(int n) {
 if (n == 0) return 1;
 else return n * fac(n-1);
}

No! - after the recursive call fac(n-1)
returns, you have to multiply by n

Tail recursion using a loop

You can always write a tail-recursive
function using a while(true)-loop instead:
void hello(int n) {
 while(true) {
 if (n > 0) {
 System.out.println(“hello world”);
 hello(n-1); n = n-1;
 } else return;
 }
}

Instead of making
a tail-recursive call,

go through the loop againExplicitly return
when the recursion

is finished

Tail recursion using a loop

Tidied up a bit:
void hello(int n) {
 while (n > 0) {
 System.out.println(“hello world”);
 n = n-1;
 }
}

Searching in a binary tree

Node<E> search(Node<E> node, int value) {
 if (node == null) return null;
 if (value == node.value) return node;
 else if (value < node.value)
 return search(node.left);
 else
 return search(node.right);
}

The same, tail-recursive

Node<E> search(Node<E> node, int value) {
 while(true) {
 if (node == null) return null;
 if (value == node.value) return node;
 else if (value < node.value)
 node = node.left;
 else
 node = node.right;
 }
}

When programming in languages like
Java that don't have TCO, you might
need to do this transformation yourself!

Tail calls

A tail-recursive function (one where all
recursive calls are tail calls) takes O(1)
stack space, in a language with TCO
If a function has a mixture of tail and
non-tail calls, the amount of stack space
is O(maximum depth of non-tail
recursive calls)
In languages without TCO, you can
transform tail recursion into a loop by
hand to save memory

A bigger example: quicksort

485 3 9 2 7 3 2 1

3 3 2 2 1 4 5 9 8 7

1 2 2 3 3 4 5 7 8 9

Quicksort Quicksort

Partition

Quicksort

We said that quicksort was in-place, but
it makes two recursive calls!
void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
}

How much memory does this use in the
worst case, including the call stack?

Quicksort

We said that quicksort was in-place, but
it makes two recursive calls!
void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
}

How much memory does this use in the
worst case, including the call stack?

O(n),
including the

call stack!

Quicksort

Let's make a version of quicksort that
uses O(log n) stack space.
void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
}

Tail call

Quicksort in O(log n) space

Idea: if we are using a language with
TCO, the second recursive call uses no
stack space (it's a tail call)!
Hence, the total memory use is
O(recursion depth of first recursive call)
So: always sort the smaller partition first,
and the bigger partition second
If the array has size n, the smaller
partition has size at most n/2, so the
recursion depth is at most O(log n).

Sorting the smaller partition first

In languages with TCO (i.e. not Java), this uses O(log n)
space.

void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 if (pivot - low < high - pivot) {
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
 } else {
 sort(a, pivot+1, high);
 sort(a, low, pivot-1);
 }
}

Sort the smaller
partition first

Sorting the smaller partition first

In Java, we must transform the tail recursion into a while(true)-
loop.

void sort(int[] a, int low, int high) {
 while(true) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 if (pivot - low < high - pivot) {
 sort(a, low, pivot-1);
 sort(a, pivot+1, high); low = pivot+1;
 } else {
 sort(a, pivot+1, high);
 sort(a, low, pivot-1); high = pivot-1;
 }
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

