
Graphs (chapter 13)

Terminology

A graph is a data structure consisting of
nodes (or vertices) and edges
● An edge is a connection between two nodes

Nodes: A, B, C, D, E
Edges: (A, B), (A, D), (D, E), (E, C)

A B

CED

Nodes are stations
Edges are “bits of line”

Nodes are components
Edges are connections

Seven bridges of Königsberg

http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Graphs

Graphs are used all over the place:
● communications networks
● many of the algorithms behind the internet
● maps, transport networks, route finding
● etc.

Anywhere where you have connections or
relationships!

More graphs

Graphs can be directed or undirected
● In an undirected graph, an edge connects two

nodes symmetrically (we draw a line between the
two nodes)

● In a directed graph, the edge goes from the source
node to the target node (we draw an arrow from
the source to the target)

A tree is a special case of a directed graph
● Edge from parent to child

Drawing graphs

We draw nodes as points, and edges as
lines (undirected) or arrows (directed):

V = {A, B, C, D, E}
E = {(A, B), (A, D),
 (C, E), (D, E)}

V = {A, B, C, D, E}
E = {(A, B), (B, A), (B, E),
 (D, A), (E, A), (E, C), (E, D)}

Drawing graphs

The layout of the graph is completely
irrelevant: only the nodes and edges
matter

V = {0, 1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 2), (0, 5), (0, 6), (3, 5), (3, 4), (4, 5), (4, 6)}

Weighted graphs

In a weighted graph, each edge has a
number, its weight:

Often, graphs have extra data attached to
the edges – weights are one case of this

Paths and cycles

Two vertices are adjacent if there is an
edge between them: Cleveland and

Pittsburgh are
adjacent

Pittsburgh and
Philadelphia are

adjacent

Paths and cycles

Two vertices are adjacent if there is an
edge between them: Cleveland and

Philadelphia are
not adjacent

Paths and cycles

In a directed graph, the target of an edge
is adjacent to the source:

A

ED

B

C

A is adjacent to D,
but D is not
adjacent to A

Paths and cycles

A path is a sequence of vertices where
each vertex is adjacent to its predecessor:

Paths and cycles

In a simple path, no node or edge appears
twice, except that the path can start and
end on the same node:

This path
is simple

Paths and cycles

In a simple path, no node or edge appears
twice, except that the path can start and
end on the same node:

This path
is not simple

Paths and cycles

A cycle is a simple path where the first
and last node are the same – a graph is
cyclic if it has a cycle, acyclic otherwise

This path is a cycle
and the graph

is cyclic

Connectedness

A graph is called connected if there is a
path from every node to every other node

4

8

5

9

6 7

This graph is
connected

Connectedness

A graph is called connected if there is a
path from every node to every other node

4

8

5

9

6 7

This graph is
not connected

Connectedness

If a graph is unconnected, it still consists
of connected components

4

8

5

9

6 7

{4, 5} is a
connected

component

{6, 7, 8, 9} is a
connected

component

Connectedness

A single unconnected node is a connected
component in itself

4

8 9

6 7

{4} is a
connected

component

How to implement a graph

Typically: adjacency list
● List of all nodes in the graph, and with each node

store all the edges having that node as source

Adjacency list – undirected graph

Each edge appears twice, once for the
source and once for the target node

How to implement a graph

Alternative – adjacency matrix
● 2-dimensional array

For an unweighted graph, 2-dimensional
array of booleans
● a[i][j] = true if there is an edge between nodes i and j

For a weighted graph, the array contains
weights instead of booleans
● a[i][j] = the weight, or a special value (e.g. infinity) if

there is no edge

For an undirected graph, a[i][j] = a[j][i]

Adjacency matrices

Adjacency matrices – disadvantage

Adjacency matrices need a lot of memory for big graphs
● One bit for each pair of nodes
● So O(|V|2) memory, where |V| is the number of nodes

Adjacency lists only use memory for the nodes and edges
that are actually present
● O(|V| + |E|), where |E| is the number of edges
● More like 64 bits for each node and edge

Adjacency lists normally better, but matrices good for:
● Small graphs (only one bit needed per pair of nodes)
● Dense graphs (1% or more (say) of pairs of nodes have

edges between them) – most graphs are not dense!

Graphs implicitly

Very often, the data in your program
implicitly makes a graph
● Nodes are objects
● Edges are references – if obj1.x = obj2 then there

is an edge from obj1 to obj2

Sometimes, you can solve your problem
by viewing your data as a graph and using
graph algorithms on it
This is probably more common than
using an explicit graph data structure!

Graph traversals

Many graph algorithms involve visiting
each node in the graph in some
systematic order
The two commonest methods are:
● depth-first search (DFS)
● breadth-first search (BFS)

Breadth-first search

A breadth-first search visits the nodes in
the following order:
● First it visits some node (the start node)
● Then all the start node's neighbours (all nodes

adjacent to it)
● Then their neighbours
● and so on

So it visits the nodes in order of how far
away they are from the start node

Implementing breadth-first search

We maintain a queue of nodes that we are
going to visit soon
● Initially, the queue contains the start node

We also remember which nodes we've
already added to the queue
Then repeat the following process:
● Remove a node from the queue
● Visit it
● Find all adjacent nodes and add them to the queue,

unless they've previously been added to the queue

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
0

Visit order:

Initially,
queue contains

start node

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:

Visit order:
0

Step 1:
remove node
from queue
and visit it

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
3 1

Visit order:
0

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
1

Visit order:
0 3

Step 1:
remove node
from queue
and visit it

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
1 2

Visit order:
0 3

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

0 is already
visited, so

we don't add
it to the queue

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
2

Visit order:
0 3 1

Step 1:
remove node
from queue
and visit it

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
2 4 6 7

Visit order:
0 3 1

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

2 is already
in the queue, so

we don't add
it again

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
4 6 7

Visit order:
0 3 1 2

Step 1:
remove node
from queue
and visit it

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
4 6 7 9 8

Visit order:
0 3 1 2

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

Skip to the end...

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:

Visit order:
0 3 1 2 4
6 7 9 8 5

We reach step 1, but
the queue is empty,

and we're finished!

Breadth-first search tree

While doing the BFS, we can
record which node we came
from when visiting each
node in the graph
(we do this when adding
a node to the queue)
By doing this we can
build a tree with the start node at the top
(the breadth-first search tree)
Starting at a node in the tree, and following it up
to the root, gives us the shortest path from each
node to the start node

Example: unweighted shortest path

We can represent a maze as a graph – nodes are
junctions, edges are paths.
How can we find a path from the entrance to the exit?

Example: unweighted shortest path

A breadth-first search tree starting from the entrance
gives us a path to any node (including the exit)
This path minimises number of junctions – each edge has
the same cost, we call this the unweighted shortest path

Depth-first search

Depth-first search is an alternative search
order that's easier to implement
To do a DFS starting from a node:
● visit the node
● recursively DFS all adjacent nodes (skipping any

already-visited nodes)

Much simpler!

Example of a depth-first search

0

2

3 1

9 8

4

7

6

5

0 visited0 unvisited

Visit order:

0

Example of a depth-first search

0

2

3 1

9 8

4

7

6

5

0 visited0 unvisited

Visit order:

0 3

Example of a depth-first search

0

2

3 1

9 8

4

7

6

5

0 visited0 unvisited

Visit order:

0 3 2

Example of a depth-first search

0

2

3 1

9 8

4

7

6

5

0 visited0 unvisited

Visit order:

0 3 2 9

Example of a depth-first search

0

2

3 1

9 8

4

7

6

5

0 visited0 unvisited

Visit order:

0 3 2 9 8

Depth-first search, alternative order

A variation of DFS, where we visit each node
after visiting the adjacent nodes.
To do a DFS starting from a node:
● mark the node as visited
● recursively DFS all adjacent nodes (skipping any already-

visited nodes)
● visit the node itself

(Wikipedia calls the order of nodes a
postordering, compared to a preordering for the
normal DFS)
What order would we visit the nodes in on the
previous example?

BFS vs DFS

BFS visits the nodes in a
“fair” order: the search area
widens gradually
E.g. on a tree: first visit
the root, then the root's
children, then grandchildren, and so on.
DFS will explore a whole branch of the tree
before backtracking and trying a different
branch – the order is much more unpredictable
which makes it unsuitable for some algorithms
(e.g. on the tree to the right, you may explore 3
directly after 0, or you may explore it last)

Implementing depth-first search

We maintain a stack of nodes that we are
going to visit next
● Initially, the stack contains the start node

We repeat the following process:
● Remove a node from the stack
● Visit it
● Find all nodes adjacent to the visited node and

add them to the stack, unless they have been
visited or added to the stack already

We can also implement DFS
by taking the BFS algorithm
and using a stack instead of

a queue!

The recursive implementation
uses the call stack to do this

implicitly

Directed acyclic graphs

Here is a directed acyclic graph (DAG)
A DAG is a
directed graph
without cycles
That means:
once you
follow an
edge there is
no way back to the
source node – we can say that one node is
after another in the graph

Example: topological sort

A topological sort of the nodes in a DAG is
a list of all the nodes, such that if (u, v) is
an edge, then u comes before v in the list
Every DAG has a
topological sort,
often several
012345678 is a
topological sort of
this DAG, but
015342678 isn't.

Example: topological sort

An example: if nodes are tasks, and an
edge (u, v) means “task u must be done
before task v”, then:
If the graph is a DAG
it means there
are no impossible
dependencies
between tasks
A topological sort gives
a valid order to do the tasks in

Topological sort

We can use a depth-first search to
topologically sort the graph:
● Suppose that we do a DFS but using the alternative

version where we visit each node only after visiting
the adjacent nodes

● If (u, v) is an edge, we will then visit u after we visit v
– we will only visit a node once we've visited all nodes
that come after it

● This is the exact opposite order to what we want for a
topological sort!

● So, to topologically sort a graph, do a DFS, then
return the nodes in the reverse order you visited
them

Summary

Graphs:
● many varieties – directed, undirected, weighted, unweighted
● all are variations on the same basic theme
● graphs can be cyclic or acyclic (directed acyclic graphs very common)
● paths, cycles, connected components

Implementing them:
● adjacency lists – good for sparse graphs
● adjacency matrix – good for dense graphs
● very often you don't use either, you just treat your set of objects as a

graph!

Some basic algorithms:
● breadth-first and depth-first search
● unweighted shortest path using BFS
● topological sort using DFS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

