Graphs (chapter 13)

Terminology

A graph is a data structure consisting of
nodes (or vertices) and edges

e An edge is a connection between two nodes

n B
D E C
Nodes: A, B, C, D, E
Edges: (A, B), (A, D), (D, B), (E, C)

P R e (o i m” T e =
o PR g b B
A A A TR, Fag - N
e odes are stations
£ AN O AR
KRS
AT PR T A TR T e FeRAEE “ o . ,’
AL SETTI L AT AR SR LS AT eS are ltS O lne
FALa
* Lo S N TN mﬂmmw
AR R
AW it e = 1o
EASSEY A
Pt i L acns - i
SR e P AT
sl vl rEr ALK WSS AAEE o
i FEEN SREEN e v
- - _4-/‘*‘""/*“:;“’ PEAEELT o SR R = e |
SR EAETCEE P T e s
E 1 F - w h
SN s AR P T . A P ~ //"
Tt)
FLATPETF iFs 7 W AR R TR B
STREET ST
Jr CaTRr T
AT BN S
A AP e y
T TR
LR e

A T AL e
AT S

o g P LY

AT T A LT

FLTAET VSO

CTARRES SO

g FLTAE S o LT
PRI O AL AT
PR T R RO S
L T e i

e P A e o
Fichcerer sy Ry (esdrem’
£ st

(Al S

g S e ::.-"
Fer e
FROCE AL
S AT AT

- Y AT sl
BELOKEREEY RT : ¢

DEEELFY
TS EAET
P P o e T Y
AT TL N AT

L

P
LT T f_r"
M ERETEF I

SRS DO qll;(

4

el TY AT

—
: REFERENTE
CFTRATT Rl Wl s oy PRV TR AL

KAEETLERT LONE e A FRWN S TR REE

ARy LA R A AT R
olem T e EAST SO A A=
& AL N M’#é‘.lwmﬂ-

ETRTRLL LMW S e, A SO TR TR A

A A

Nodes are components
Edges are connections

%
74 b = 70mI S /.59
7%
—
9 2.5
CURVATURE
4 » COMPENSATOR

A AZ/E

Seven bridges of Konigsberg

http'/ / en.wikipedia.org/ wiki/Seven_Bridges_of_Konigsberg

158 mﬁﬁ m;i—
COEmEAE ..__;
mﬁmaw ..=1~.

‘. . -' -IE]:' qqmm '. -
‘ml"ﬁﬁ,‘ u wmn ST Lets :
Wi T]

4

i...,"m“"ﬂl

http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Graphs

Graphs are used all over the place:

e communications networks

» many of the algorithms behind the internet
e maps, transport networks, route finding

e etc.

Anywhere where you have connections or
relationships!

More graphs

Graphs can be directed or undirected

o In an undirected graph, an edge connects two
nodes symmetrically (we draw a line between the
two nodes)

e In a directed graph, the edge goes from the source
node to the target node (we draw an arrow from
the source to the target)

A tree is a special case of a directed graph
» Edge from parent to child

Drawing graphs

We draw nodes as points, and edges as
lines (undirected) or arrows (directed):

A {@ E_,f"dd_}.-——-— ;-"'d—_‘j]
D > Al 7 il

V={A B CD,E} V={A B CD,E}
E =1{(A, B), (A, D), E =1{(A, B), (B,A), (B, E),
(C, E), (D, E)} (D, A), (E, A), (E, O), (E, D)}

Drawing graphs

The layout of the graph is completely
irrelevant: only the nodes and edges
matter

Cﬁ

Vv=1{0,1,2,3,4,5, 6}
E=1{(0, 1), (0,2),(0,5), (0, 6), (3,5), (3,4), (4, 5), (4, 6);

Weighted graphs

In a weighted graph, each edge has a
number, its weight:

'''''''

the edges — weights are one case of this

Paths and cycles

Two vertices are adjacent if there is an
edge between them:

fpervney gy e, e
BRI PI A PEA!

Cleveland and

Pittsburgh are
adjacent

Pittsburgh and

Philadelphia are
adjacent

Paths and cycles

Two vertices are adjacent if there is an

edge between them:

Cleveland and
Philadelphia are
not adjacent

Paths and cycles

In a directed graph, the target of an edge
is adjacent to the source:

A is adjacent to D,
but D is not
adjacent to A

Paths and cycles

A path is a sequence of vertices where
each vertex is adjacent to its predecessor:

Ann Arbor

Detroit

120 Cleveland 130 Pittsburgh

Toledo
20

Chicago

180 Philadelphia

180

Indianapolis Columbus

Paths and cycles

In a simple path, no node or edge appears
twice, except that the path can start and
end on the same node:

Ann Arbor

Detroit

Cleveland

120 130 Pittsburgh

Toledo

Chicago

Philadelphia

“This path
is simple

180
18
P P

Indianapolis Columbus

Paths and cycles

In a simple path, no node or edge appears
twice, except that the path can start and
end on the same node:

Ann Arbor

Detroit

Cleveland

120 130 Pittsburgh

Toledo

Chicago

Philadelphia

This path
is not simple

180
18
P P

Indianapolis Columbus

Paths and cycles

A cycle is a simple path where the first
and last node are the same — a graph is
cyclic if it has a cycle, acyclic otherwise

Ann Arbor

@ s Detroit
40 0 9 120 Cleveland 130 Pittsburgh
260) ’]

Toledo

20

Chicago
P

180 Philadelphia

This path is a cycle

and the graph

180 . .
is cyclic

Indianapolis Columbus

Connectedness

A graph is called connected if there is a
path from every node to every other node

This graph is
connected

Connectedness

A graph is called connected if there is a
path from every node to every other node

This graph is

not connected

Connectedness

[f a graph is unconnected, it still consists
of connected components

@) %)

4,5}isa - {6,7,8,9}isa
connected connected
component component

Connectedness

A single unconnected node is a connected
component in itself

{4} is a 7 @

connected
component

How to implement a graph

Typically: adjacency list

o List of all nodes in the graph, and with each node
store all the edges having that node as source

Adjacency list — undirected graph

Each edge appears twice, once for the
source and once for the target node

How to implement a graph

Alternative — adjacency matrix
e 2-dimensional array

For an unweighted graph, 2-dimensional
array of booleans

e a[i][j] = true if there is an edge between nodes i and j

For a weighted graph, the array contains
weights instead of booleans

o a[i][j] = the weight, or a special value (e.g. infinity) if
there is no edge

For an undirected graph, ali][j] = alj][i]

Adjacency matrices

Colir

VA el e
/ey el el /)
W,/ .
sz))) fes/r0PT
(270

o S ST T S

Clerirng

/225147

Adjacency matrices — disadvantage

Adjacency matrices need a lot of memory for big graphs

e One bit for each pair of nodes

e So O(|V|2) memory, where | V| is the number of nodes

Adjacency lists only use memory for the nodes and edges
that are actually present

« O(|V| + |E|), where | E| is the number of edges
« More like 64 bits for each node and edge

Adjacency lists normally better, but matrices good for:
« Small graphs (only one bit needed per pair of nodes)

» Dense graphs (1% or more (say) of pairs of nodes have
edges between them) — most graphs are not dense!

Graphs implicitly

Very often, the data in your program
implicitly makes a graph
» Nodes are objects

« Edges are references — if objl.x = obj2 then there
is an edge from objl to obj2

Sometimes, you can solve your problem

by viewing your data as a graph and using

graph algorithms on it

This is probably more common than
using an explicit graph data structure!

Graph traversals

Many graph algorithms involve visiting
each node in the graph in some
systematic order

The two commonest methods are:

e depth-first search (DES)
e breadth-first search (BES)

Breadth-first search

A breadth-first search visits the nodes in
the following order:

o First it visits some node (the start node)

o Then all the start node's neighbours (all nodes
adjacent to it)

e Then their neighbours

e and so on

So it visits the nodes in order of how far
away they are from the start node

Implementing breadth-first search

We maintain a gueue of nodes that we are
going to visit soon

o Initially, the queue contains the start node

We also remember which nodes we've
already added to the queue

Then repeat the following process:

« Remove a node from the queue

e Visitit

e Find all adjacent nodes and add them to the queue,

unless they've previously been added to the queue

Example of a breadth-first search

Queue:

0

Visit order:

Initially,
queue contains
start node

unvisited queued @ visited

Example of a breadth-first search

Queue:

Visit order:

0

Step 1:
remove node
from queue
and visit it

unvisited queued @ visited

Example of a breadth-first search

Queue:
3 1

Visit order:

0

Step 2:
add adjacent nodes
to queue
(only unvisited ones)

. unvisited queued @ visited

Example of a breadth-first search

Queue:
1

Visit order:
0 3

Step 1:
remove node
from queue
and visit it

unvisited queued @ visited

Example of abre iited s 3rch

we don't add
it to the queue |

Queue:
1 2

Visit order:
0 3

Step 2:
add adjacent nodes
to queue
(only unvisited ones)

unvisited queued @ visited

Example of a breadth-first search

;111@11@3 G

Visit order:
0 3 1

2
Step 1: |
d
el RO
unvisited queued @ visited

and visit it

Example of a bre 2isalready 3rch

in the queue, so
we don't add

Queue: ~ ltagain

2 4 6 7

Visit order:
0 3 1

Step 2:
add adjacent nodes
to queue
(only unvisited ones)

unvisited queued @ visited

Example of a breadth-first search

Queue:
4 6 7

Visit order:
9 312

Step 1:
remove node
from queue
and visit it

9 8

unvisited queued @ visited

Example of a breadth-first search

46798 e

Visit 0rc\1\e\
0312

Step2:
add adjacent nodes @) G
to queue
‘ unvisited queued @ isited

Skip to the end...

(only unvisited ones)

Example of a breadth-first search

Queue:

Visit order:

0 3124
6 7 9 8 5

We reach step 1, but
the queue is empty,
and we're finished!

unvisited queued @ visited

Breadth-first search tree

While doing the BFS, we can Yo
record which node we came P \
from when visiting each 5~ e, :
node in the graph et "\

- - & & fif?“
(we do this when addmg i ' s
a node to the queue) - -

i:___x"’ IL_F f.__,.,-"'f

By doing this we can
build a tree with the start node at the top
(the breadth-first search tree)

Starting at a node in the tree, and following it up
to the root, gives us the shortest path from each
node to the start node

Example: unweighted shortest path

We can represent a maze as a graph — nodes are

junctions, edges are paths.

How can we find a path from the entrance to the exit?

L)?

[

o S ST S Ss

A ST LLT /LTS

(LSS S

W,

//,
/L

LSS LT T LT LS L LS

i
[/ [

/

(LSS

L)/ LLL TS

Y/

(LS

(LI LLLLLLLL S LSS

LSS

Example: unweighted shortest path

A breadth-first search tree starting from the entrance
gives us a path to any node (including the exit)

This path minimises number of junctions — each edge has
the same cost, we call this the unweighted shortest path

ULLLLLLLLLL L] /éf

Depth-first search

Depth-first search is an alternative search
order that's easier to implement
To do a DFS starting from a node:

e visit the node

o recursively DES all adjacent nodes (skipping any
already-visited nodes)

Much simpler!

Example of a depth-first search

Visit order:

0

unvisited @ visited

Example of a depth-first search

Visit order:

0 3

unvisited @ visited

Example of a depth-first search

Visit order:

0 3 2

unvisited @ visited

Example of a depth-first search

Visit order:

0 3 29

unvisited @ visited

Example of a depth-first search

Visit order: 5)

0 329 8
o

unvisited @ visited

Depth-first search, alternative order

A variation of DFS, where we visit each node
after visiting the adjacent nodes.

To do a DFS starting from a node:
e mark the node as visited

o recursively DFS all adjacent nodes (skipping any already-
visited nodes)

e visit the node itself

(Wikipedia calls the order of nodes a

postordering, compared to a preordering for the
normal DES)

What order would we visit the nodes in on the
previous example?

BFS vs DFS

.-'""'.’—HJ
BES visits the nodesina \,;;
. 7/ sl L c
“fair” order: the search area f"?j“'\

1 "ﬂ_-d--ff - -'“'fff o~ ; -- .
widens gradually }f_fij @ @ @
E.g. on a tree: first visit ; s

v, (5 5] /9)
the root, then the root's & (& (=

children, then grandchildren, and so on.

DES will explore a whole branch of the tree
before backtracking and trying a different
branch - the order is much more unpredictable
which makes it unsuitable for some algorithms
(e.g. on the tree to the right, you may explore 3
directly after O, or you may explore it last)

Implementing depth-first search

We maintain a sta¢ We can also implement DES

: . by taking the BFS algorithm
SO to visit next and using a stack instead of

o Initially, the stack cc a queue!

We repeat the follo The recursive implementation

uses the call stack to do this
implicitly

e Remove a node from
. Visit it f %
» Find all nodes adjacent to the visited node and

add them to the stack, unless they have been
visited or added to the stack already

Directed acyclic graphs

Here is a directed acyclic graph (DAG)

ADAGisa ?

directed graph - g e
f% — fﬂ_’&\x_.i L

without cycles f

_— = 7 B

L{:;f_f s é?:i}f s E ifj—é?_?;?
That means: JL\ \ —

T R _% e
once YOU ﬁ? in})f _ /gfrz Gf_f;f’ f-if ,(5
follow an =/ _

: c”f_ﬁ’j;\/f ”E’"M T aﬁ_s' - _;?g?ﬁ lever S

edge thereis ° Z G2 i (2
no way back to t@

source node — we can say that one node is
after another in the graph

Example: topological sort

A topological sort of the nodes in a DAG is
a list of all the nodes, such that if (u, v) is
an edge, then u comes before v in the list

Every DAG has a 7 7.

topological sort, / \ /\ ,,.g_,_,/,
il .

often several

012345678 is a /\ /

topological sort of =
this DAG, but / \

“‘1

015342678 isn't.

Example: topological sort

An example: if nodes are tasks, and an
edge (u, v) means “task u must be done
before task v”, then:

If the graph is a DA / 7, —~(2
it means there \ / \T‘ _
- ¥

. 1l (%
dependencies /\ el
between tasks / L’\

A topological sort gives
a valid order to do the tasks in

Topological sort

We can use a depth-first search to
topologically sort the graph:

« Suppose that we do a DFS but using the alternative
version where we visit each node only after visiting
the adjacent nodes

o If (u, v) is an edge, we will then visit u after we visit v
— we will only visit a node once we've visited all nodes
that come after it

o This is the exact opposite order to what we want for a
topological sort!

« So, to topologically sort a graph, do a DFS, then
return the nodes in the reverse order you visited
them

Summary

Graphs:

e many varieties — directed, undirected, weighted, unweighted
o all are variations on the same basic theme
o graphs can be cyclic or acyclic (directed acyclic graphs very common)

o paths, cycles, connected components
Implementing them:

o adjacency lists — good for sparse graphs

o adjacency matrix — good for dense graphs

« very often you don't use either, you just treat your set of objects as a
graph!

Some basic algorithms:

o breadth-first and depth-first search
« unweighted shortest path using BES
o topological sort using DFS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

